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The following exercises are meant as suggestions for discus-
sions that can illuminate important aspects of the complex-
ity science approach to systems consisting of many interre-
lated components.

Exercise 1 – Consequences of criticality
Discuss in what way the response and/or control of a system supporting critical behaviour
differ from a system with short range correlations and Gaussian distributed event sizes.

Exercise 2 – Power law probability distribution
Consider a probability distribution for event sizes s given by

P (s) =
{
As−τ if s ∈ N
0 otherwise

where A is a normalisation factor.

(a) Explain in what sense power laws are scale invariant.

(b) Derive the normalisation constant

(c) Compute the moments of the distribution and derive criteria on τ for the existence
of the a-th moment.

Exercise 3 – Hierarchies
Make a summary of the hierarchies of processes, nested within each other, you can identify
when you think of systems around us such as climate, economics, a human being, etc.

Exercise 4 – "Things" versus processes
Discuss emergence from the viewpoint that reality actually consists of processes and not
of “things”
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The following references are of relevance to this discussion:

• A.N. Withehead, Process and Reality (Gifford Lectures), Macmillan, USA, 1979.

• V. Lowe, Understanding WHitehead. The Johns Hopkins Press, 1962.

• D.W. Sherburne, A Key to Whitehead’s Process and Reality. University of Chicago
Press, 1981.

• D. J. Chalmers. Strong and weak emergence. In P. Clayton and P. Davies (eds), The
Re-mergence of Emergence. Oxford University Press, 2006.

• S. Gibb, R. F. Hendry and T. Lancaster (eds). The Routledge Handbook of Emer-
gence. Routledge, 2019.

Exercise 5 – Emergence of structure and intermittency
List examples from geophysics, climate, biology, sociology and neuroscience/psychology
which involves the emergence of some kind of

(1) Robust many component structures.

(2) Intermittency in time.

Exercise 6 – Intermittency, transitions and tipping points
Make a list of as many types of intermittency and transitions as possible in as many differ-
ent complex systems as you can think of. For each transition try to suggest ways to check
if the transition involves a diverging length scale and some type of scale invariance.

Exercise 7 – Fluctuations as early warning signal
Tipping points and fluctuations.

(a) List examples of abrupt changes, or tipping points, which may be precede by an
increased in the fluctuations of some observable parameter.

(b) Now list examples of abrupt changes, or tipping points, which are not precede by an
increased in the fluctuations of some (known) observable parameter.
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Exercise 8 – Branching process and power laws
Consider a branching process with the following branching probabilities.

p0 = q,

p1 = 0,
p2 = p,

pk = 0 ∀k ≥ 2.

(1)

Let P (T ) denote the probability that extinction occurs at generation T . And let P (S)
denote the probability that the total number of nodes generated before extinction is equal
to S

• For which value of p is this process critical.

• By direct simulation, consider the limit µ→ 1− and estimate the value of the expo-
nent of the power law P (T ) is approaching. At criticality, the theoretical value for
the exponent corresponding to P (S) is a = −3/2 and the exponent corresponding to
P (T ) is b = −2.

Exercise 9 – Entropic driven dynamics
We consider a particle moving on the lattice structure depicted in Fig. 1. We assume it
moves to each of its nearest neighbour sites with equal probability and that it moves in a
way such that within each box it is equally like to be found at any of the L2

i squares, where
Li is the linear size of box i, i.e. Li = 2i with i = 1, 2, 3, ...

(a) Assume for a moment that the passage between boxes is blocked. What is the entropy
of the particle when placed in box i.

Imagine we have an ensemble of systems like the one in Fig. 1. We can then think of what
on average is happening in this set of equivalent systems. It is natural to estimate the
average time between recurrent visits to a given site in box i as given by the inverse of the
probability to visit a site.

(b) Assume the particle is in box i. What is the probability that the particle is located
next to an escape site, see Fig. 1.

(c) What is the probability per time that a particle in box i moves to box i+ 1.

(d) What is the probability per time that a particle in box i+ 1 moves to box i.

Now imagine one particle is in box i and one in box i+ 1.

(e) Show that the net probability (right move minus left move) for a particle being move
from box i to i+ 1 is given by 1

3 ·
1

2i+1
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Figure 1: Particle moving in boxes. Imagine the figure extends to the right with ever more
boxes i = 1, 2, 3, 4, ... added. The particle is able to move between neighbour boxes though
the hole at the bottom right corner of box i.

We see the particles will move towards higher entropy. Considerations like these were used
in R. Arthur and A. Nicholson, Selection Principle for Gaia (J. Theo. Biol. 533, 110940,
2022) to argue about Gaia, evolution and “entropic pressure”.

Exercise 10 – Early warning signal
In stead of the increase in fluctuations one may in principle use the overlap between δn(t)
and the normalised eigenvector emax corresponding to the most positive eigenvalue λmax.
We define a warning signal, Q(t), from the growth predicted during the succeeding ∆t time
units by the expansion of δn(t) component along the most unstable direction

Q(t) = |eλmax∆tδn(t) · emax|. (2)

As a first step, let us look at the the temporal evolution of two populations x(t) and
y(t). The x population evolves according to the following Ornstein-Uhlenbeck process with
a time independent η > 0 and X̄ > 0 given by

x(t+ 1) = [x(t)− η(x(t)− X̄)] exp(−αy(t)) +
√
x(t)χ(t) (3)

and the restoring term exponentially damped, α > 0, by coupling to a growth process
controlling the y population according to

y(t+ 1) =
{
y(t) + νx(t) with prob. p
y(t)(1 + β) +

√
y(t)χ(t) with prob. 1− p, (4)

where we assume the two constants ν and β to be positive. We can loosely think of x(t)
and y(t) as being proportional to the size of the populations of two types X and Y . Type
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Y may become populated as a result of a mutation from population X, which occurs with
probability p

Simulate the process in Eqns. (3) and (4). Construct Q(t) in Eq. (2) for the motion in
the vicinity of the fixed point at (x, y) = (X̄, 0). Starting from different initial points on
the x-axis near x = X, study the fluctuations |δ(t)| = |(x(t)− X̄, y(t)− 0)| away from the
fixed point at (X̄, 0) and the temporal behaviour of Q(t). Compare the behaviour of |δ(t)|
and Q(t) in terms of early warning signals.

You can for example consider the following parameters: η = 10−1, α = β = ν = 10−2,
X̄ = 1, p = 10−4.

Text books – There very are many relevant and good text books. Ask me for other
suggestions. Here are three I know particularly well. Click here for link to books.
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https://www.amazon.co.uk/stores/Henrik-Jeldtoft-Jensen/author/B001IXRWYA?ref=ap_rdr&store_ref=ap_rdr&isDramIntegrated=true&shoppingPortalEnabled=true
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