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One Problem, Many Approaches

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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Figure: LIGO and VIRGO scientific
collaboration, [1602.03837].

Template → EOB, IMR
A. Buonanno, T. Damour [gr-qc/0001013]

P. Ajith et al. [0710.2335]

Inspiral phase, PN Expansion

Expansion in
𝐺𝑚

𝑐2𝑟
∼ 𝑣2

𝑐2

𝐻 = 𝐻0PN + 𝐻1PN

𝑐2
+ 𝐻2PN

𝑐4
+
𝐻2,5PN

𝑐5
+ 𝐻3PN

𝑐6
. . .

• Traditional GR approach Bernard, Bini, Blanchet, Buonanno, Damour, Faye, Geralico,

Jaranowski, Schäfer...

L. Blanchet [1310.1528 - 1812.07490]

• EFT methods Foffa, Goldberger, Levi, Porto, Ross, Rothstein, Steinhoff, Sturani...

W. Goldberger [hep-ph/0701129], S. Foffa, R. Sturani [1309.3474],
R. A. Porto [1601.04914]



The Post-Minkowskian Expansion

𝑝1

𝑝2

𝑝4
𝑝3

𝑏

𝑝4 − 𝑝1 = 𝑞

Extract Classical contribution

𝑐 = ℏ = 1

𝑔𝜇𝜈 = 𝜂𝜇𝜈 +
√
32𝜋𝐺 ℎ𝜇𝜈

Quantum vs Classical PM

ℓc

𝑏︸︷︷︸ ≪ 𝐺𝑚

𝑏︸︷︷︸ ≪ 1 → 𝑞

𝑚︸︷︷︸ ≪ 𝐺𝑚𝑞︸︷︷︸ ≪ 1

Two main methods:
• Classical physics from full scattering amplitude

⟨𝑝4, 𝑝3 | 𝑆 | 𝑝1, 𝑝2 ⟩ = 1 + 𝑖M(𝑞2 )
D. Neill, I. Z. Rothstein [1304.7263], N. E. J. Bjerrum-Bohr et al. [1806.04920], Z. Bern et

al. [1908.01493], E. Herrmann et al. [2104.03957], N. E. Bjerrum-Bohr et al. [2104.04510],

P. Di Vecchia et al. [2104.03256 - 2210.12118].

• Classical Effective Field Theory approach

𝑒𝑖𝑆eff [𝑥𝑎 ] =
∫

D[ℎ]𝑒𝑖 (𝑆grav+𝑆GF+𝑆sources )

W. D. Goldberger, I. Z. Rothstein [hep-th/0409156], G. Kälin, R. A. Porto [2006.01184]

G. Mogull, J. Plefka, J. Steinhoff [2010.02865]



The importance of Balance Laws

d𝐸
d𝑡

= −F𝐸
d𝐽
d𝑡

= −F𝐽

Bound case

𝑟

Wave phase from the instantaneous flux

Δ𝜙 (𝑡 ) ∝
∫

d𝑣 𝑣3
d𝐸/d𝑣
F𝐸

W. D. Goldberger, I. Z. Rothstein [hep-th/0409156], T. Damour et al. [1110.2938]

L. Blanchet [1310.1528 - 1812.07490]

Unbound case

𝑏

Linear Response formula

2𝜒rad (𝐸, 𝐽 ) = 𝜕𝜒cons

𝜕𝐸

∫
d𝑡 F𝐸 + 𝜕𝜒cons

𝜕𝐽

∫
d𝑡 F𝐽

D. Bini, T. Damour [1210.2834], T. Damour [2010.01641]



Supertranslation puzzle

DeWitt-Thorne Formula

𝑢 ≔ 𝑡 − 𝑟

Δ𝐽
𝑖 𝑗

DWT
=

∫
d𝑢dΩ
32𝜋𝐺

𝑟2
(
2ℎ

𝑎 [𝑖
TT

¤ℎ 𝑗 ]𝑎
TT

− ¤ℎ𝑎𝑏
TT𝑥 [𝑖𝜕 𝑗 ]ℎ𝑎𝑏

TT

)
= 𝑂 (𝐺2 )

• Linear response gives the correct radiation-reaction contribution

2𝜒LO
rad =

𝑂 (𝐺)︷   ︸︸   ︷
𝜕𝜒cons

𝜕𝐽

𝑂 (𝐺2 )︷    ︸︸    ︷
Δ𝐽DWT = 𝑂 (𝐺3 )

T. Damour [2010.01641]

Supertranslation ambiguity

• In the BMS formalism, 𝐽 is not supertranslation invariant
E. T. Newman R. Penrose J. Math. Phys. 7 (1966),
A. Ashtekar, T. De Lorenzo, N. Khera [1910.02907]

• Δ𝐽𝑖 𝑗 = 𝑂 (𝐺2 ) −−→
ST

Δ𝐽𝑖 𝑗 = 𝑂 (𝐺3 )
G. Veneziano, G. A. Vilkovisky [2201.11607]

• Invariant definition of 𝐽(inv) leads to Δ𝐽
𝑖 𝑗

(inv) = 𝑂 (𝐺3 )
G. Compère, R. Oliveri, A. Seraj [1912.03164],
R. Javadinezhad, U. Kol, M. Porrati [2202.03442]



Non-covariance puzzle

Initial c.m. frame

𝑝1,c.m.

𝑝2,c.m.𝑏

𝑝
𝜇

1,c.m. = (𝐸1, 𝒑)

𝑝
𝜇

2,c.m. = (𝐸2, −𝒑)

T. Damour [2010.01641]

Initial rest frame of one body

𝑃1

𝑃2
𝑏

𝑃
𝜇

1 = (𝛾𝑚1, 𝑷)

𝑃
𝜇

2 = (𝑚2, 0)

G. U. Jakobsen et al. [2101.12688],
S. Mougiakakos, MMR, F. Vernizzi [2102.08339]

Δ𝐽
𝑖 𝑗

DWT
= 2

𝐺2𝑚1𝑚2

𝑏2

2𝛾2 − 1√︁
𝛾2 − 1

I(𝛾)


2𝑏 [𝑖 𝑝 𝑗 ] Initial c.m. frame

2𝑏 [𝑖𝑃 𝑗 ] Initial rest frame of 𝑚2

Δ𝐽
𝜇𝜈

QFT
= 2

𝐺2𝑚1𝑚2

𝑏2

2𝛾2 − 1√︁
𝛾2 − 1

I(𝛾)𝑏 [𝜇 (𝑝𝜈 ]
1 − 𝑝

𝜈 ]
2 )

• Agreement only in the initial c.m. frame
A. V. Manohar, A. K. Ridgway, C.-H. Shen [2203.04283]

P. Di Vecchia et al. [2203.11915-2210.12118]

• New Noetherian computation matches this result D. Bini, T. Damour [2211.06340]



The BMS formalism

𝜃1 = 𝜃 = const, 𝜃2 = 𝜙

∼ 𝑟Δ𝜙

𝑟, 𝑢 = const.

𝜙 = const
𝑛𝜇

Adapted coordinates (𝑢, 𝑟 , 𝜃𝐴) with 𝐴 = 1, 2

• Hypersurfaces of constant 𝑢 are null

𝑔𝑢𝑢 = 0

• 𝜃𝐴 = const along the null-rays

𝑔𝑢𝐴 = 0

• Surface element 𝑟 , 𝑢 = const is 𝑟2𝑑2Ω

det(𝑔𝐴𝐵 ) = 𝑟2det(Ω𝐴𝐵 )
Ω𝐴𝐵 metric of the 2-sphere.

Most generic metric

𝑑𝑠2 = −𝜇𝑒2𝛽d𝑢2 − 2𝑒2𝛽d𝑢d𝑟 + 𝛾𝐴𝐵 (𝑟d𝜃𝐴 +𝑊𝐴d𝑢) (𝑟d𝜃𝐵 +𝑊𝐵d𝑢)

H. Bondi Nature 186,(1960), R. K. Sachs Proc. R. Soc. Lond. A 270, (1962)

H. Bondi, M. G. J. van der Burg, A. W. K. Metzner Proc. R. Soc. Lond. A 269, (1962)



The BMS formalism

𝑑𝑠2 = −𝜇𝑒2𝛽d𝑢2 − 2𝑒2𝛽d𝑢d𝑟 + 𝛾𝐴𝐵 (𝑟d𝜃𝐴 +𝑊𝐴d𝑢) (𝑟d𝜃𝐵 +𝑊𝐵d𝑢)

• ℑ+ (ℑ− ) → future (past) time-like infinities, where massless
particles end up (come from)

• Asymptotic expansion near ℑ+ to study emitted radiation

𝐷𝐴Ω𝐶𝐷 = 0, ¤𝑋 ≡ 𝜕𝑢𝑋

Asymptotic Metric near ℑ+

𝜇 = 1 −
2𝐺 𝑀

𝑟
+ . . . , 𝛾𝐴𝐵 = Ω𝐴𝐵 + 1

𝑟
𝐶𝐴𝐵 + . . . , 𝛽 = − 1

32𝑟2
𝐶𝐴𝐵𝐶

𝐴𝐵 + . . .

𝑊𝐴 =
1

2𝑟
𝐷𝐵𝐶

𝐴𝐵 + 1

𝑟2

(
2

3
𝐺 𝑁 𝐴 − 1

16
𝐷𝐴 (𝐶𝐵𝐶𝐶𝐵𝐶 ) + 1

2
𝐶𝐴𝐵𝐷𝐶𝐶𝐵𝐶

)
+ . . .

𝑀 (𝑢, 𝜽 ) → Mass Aspect, 𝑁𝐴 (𝑢, 𝜽 ) → Angular Momentum Aspect

𝐶𝐴𝐵 (𝑢, 𝜽 ) → Shear Tensor 𝑁𝐴𝐵 (𝑢, 𝜽 ) ≡ ¤𝐶𝐴𝐵 (𝑢, 𝜽 ) → News Tensor



The BMS formalism

• Symmetries that preserve asymptotic flatness
𝛿𝑔𝜇𝜈

��
ℑ+ = (L𝜉𝑔)𝜇𝜈

��
ℑ+ = 0

𝑛𝜇 = (1, sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃 ) , 𝜕𝐴 = (𝜕𝐴𝑛
𝜇 )ð𝜇

• Asymptotic Killing vector 𝜉 =

(
𝛼(𝜽 ) + 𝑢

2
𝐷𝐴𝑌

𝐴 (𝜽 )
)
𝜕𝑢 +𝑌 𝐴 (𝜽 )𝜕𝐴

• Spherical harmonics decomposition

𝛼(𝜽 ) = 𝑎 · 𝑛 + 𝛼ℓ≥2 (𝜽 )

Spacetime translations Supertranslations

• 𝑌 𝐴 (𝜽 ) generate Lorentz transformations

• Metric near ℑ+ determined by 𝑀, 𝑁𝐴 and 𝐶𝐴𝐵

• Flat spacetime not unique but changes under supertranslation

𝐶𝐴𝐵 = 0 −−→
ST

𝐶𝐴𝐵 = −(2𝐷𝐴𝐷𝐵 − Ω𝐴𝐵𝐷
2 )𝛼 ≠ 0



BMS Linear Momentum and Flux

BMS Supermomentum and Flux

𝑃 (𝜎+ ) − 𝑃 (𝜎− ) = −𝐹𝑃 (N) ,

𝑃 (𝜎) =
∫
𝜎

d2Ω

4𝜋
𝛼𝑀 ,

𝐹𝑃 (N) =
∫
N

d𝑢d2Ω

32𝜋𝐺
𝛼(𝑁 𝐴𝐵𝑁𝐴𝐵 − 2𝐷𝐴𝐷𝐵𝑁 𝐴𝐵 )

R. M. Wald, A. Zoupas [gr-qc/9911095]

É. É. Flanagan and D. A. Nichols [1510.03386]

𝑃 (ℑ+
+ ) − 𝑃 (ℑ+

− ) = −𝐹𝑃 (ℑ+ ) ,

• The ℓ ≤ 1 harmonics give the linear momen-
tum balance law

• Confirmed explicitly up to 𝑂 (𝐺3 )
• Flux coincides with DeWitt-Thorne formula

𝐶𝐴𝐵 → lim
𝑟→∞

𝑟ℎTT
𝜇𝜈 (𝑥 )

𝑝−
1

𝑝−
2

𝑝+
1

𝑝+
2

𝐹𝑃



BMS Angular Momentum and Flux

BMS Angular Momentum and Flux

𝑁𝐴 ≔ 𝑁𝐴 − 𝑢𝐷𝐴𝑀

𝐽 (𝜎) =
∫
𝜎

d2Ω

8𝜋𝐺
𝑌 𝐴

(
𝐺�̂�𝐴 − 1

16
𝐷𝐴 (𝐶𝐵𝐶𝐶𝐵𝐶 ) − 1

4
𝐶𝐴𝐵𝐷𝐶𝐶𝐵𝐶

)
,

𝐹𝐽 (N) =
∫
N

d𝑢d2Ω

32𝜋𝐺
𝑌 𝐴

(
𝑁𝐵𝐶𝐷𝐴𝐶𝐵𝐶 − 2𝐷𝐵 (𝑁𝐵𝐶𝐶𝐴𝐶 )

+ 1

2
𝐷𝐴 (𝑁𝐵𝐶𝐶𝐵𝐶 ) − 1

2
𝑢𝐷𝐴 (𝑁𝐵𝐶𝑁𝐵𝐶 )

)
R. M. Wald, A. Zoupas [gr-qc/9911095], É. É. Flanagan and D. A. Nichols [1510.03386]

𝐽 (𝜎+ ) − 𝐽 (𝜎− ) = −𝐹𝐽 (N)

• Spatial components of the flux gives the DeWitt-
Thorne formula

𝐶𝐴𝐵 → lim
𝑟→∞

𝑟ℎTT
𝜇𝜈 (𝑥 )

• 𝐽 (𝜎) generically different from mechanical angu-
lar momentum



Pedagogical example: Boosted Schwarzschild

𝑚

𝑝𝜇 = (𝑚, 0)
J𝜇𝜈 = 0 𝑚

𝑝𝜇 = 𝑚𝑢𝜇

J𝜇𝜈 = 2𝑏 [𝜇 𝑝𝜈 ]
𝑢𝜇

𝑏𝜇

𝑀 = 𝑚4/(−𝑛 · 𝑝)3 �̂�𝐴 = 3𝑀𝐷𝐴 (𝐵 + 𝑆) + (𝐵 + 𝑆)𝐷𝐴𝑀

𝐶𝐴𝐵 = −(2𝐷𝐴𝐷𝐵 − Ω𝐴𝐵𝐷
2 )𝑆

• 𝐵 = (𝑛 · 𝑏) translation of amount 𝑏𝜇

• 𝑆 = 2𝐺 (𝑛 · 𝑝) log
( −𝑛 · 𝑝

𝑚

)
+ 𝛽

• Bondi momentum 𝑃 coincides
with momentum of the system

𝐽 = J + 𝑗 (𝑀, 𝑆)

• 𝑗 (𝑀, 𝑆) is the supertranslation
ambiguity

• Choose 𝛽 such that 𝑆 = 0.



New definition of Angular Momentum

one body → 𝐽 = J + 𝑗 (𝑀, 𝑆)

𝑝−
1

𝑝−
2

𝑝+
1

𝑝+
2

𝑀± =

2∑︁
𝑎=1

𝑚𝑎

(−𝑛 · 𝑝±
𝑎 )3

𝑆− =

2∑︁
𝑎=1

2𝐺 (𝑛 · 𝑝−
𝑎 ) log

( −𝑛 · 𝑝−
𝑎

𝑚𝑎

)
+ 𝛽

𝑆+ =

2∑︁
𝑎=1

2𝐺 (𝑛 · 𝑝+
𝑎 ) log

( −𝑛 · 𝑝+
𝑎

𝑚𝑎

)
+ 𝛽 +𝑂 (𝐺ΔE)

• 𝑁±
𝐴 not a superposition

D. Bini, T. Damour [2211.06340]

Asymptotic Bondi 𝐽 Different supertranslation at ℑ+
±

J± = 𝐽± − 𝑗 (𝑀±, 𝑆± )

𝑆± = 𝑍± + 𝐶± + 𝛽

Translation 𝑍± ≡ Pℓ≤1𝑆± Supertranslation 𝐶± ≡ Pℓ≥2𝑆±



The Angular Momentum Flux
• Δ𝑀 = 𝑀+ − 𝑀− , Δ𝐶 = 𝐶+ − 𝐶− , Δ𝑍 = 𝑍+ − 𝑍− , Δ𝑆 = Δ𝑍 + Δ𝐶 .

J± = 𝐽± − 𝑗 (𝑀±, 𝑆± )

Asymptotic Bondi 𝐽 Different supertranslations at ℑ+
±

𝑆± = 𝑍± + 𝐶± + 𝛽

• Freedom to fix 𝛽 to remove either 𝑆± but not both at the same time
• Set 𝑍− = 0 to “restore” the origin at ℑ+

− , then 𝑍+ = Δ𝑍.
J − = 𝐽− − 𝑗 (𝑀− , 𝐶− ) , J+ = 𝐽+ − 𝑗 (𝑀+, 𝐶+ ) − 𝑗 (𝑀+, Δ𝑍 )

J+ − J − = −ΔJ

New Angular Momentum Flux

ΔJ ≔ 𝐹𝐽 + 𝑗 (Δ𝑀,𝐶− ) + 𝑗 (𝑀+, Δ𝑆)

• Bondi angular momentum balance law 𝐽+ − 𝐽− = −𝐹𝐽

• Rewrite 𝑗 (𝑀+, 𝐶+ ) − 𝑗 (𝑀− , 𝐶− ) = 𝑗 (Δ𝑀,𝐶− ) + 𝑗 (𝑀+, Δ𝐶 )



The Angular Momentum Flux
• Δ𝑀 =

1

4𝐺
𝐷𝐴𝐷𝐵

∫ +∞

−∞
d𝑢 𝑁𝐴𝐵 − 1

8𝐺

∫ +∞

−∞
d𝑢 𝑁𝐴𝐵𝑁 𝐴𝐵 𝑁𝐴𝐵 ≡ ¤𝐶𝐴𝐵

Radiative Flux

Δ
(rad)
J =

∫
d𝑢d2Ω

32𝜋𝐺
𝑌 𝐴

(
N𝐵𝐶𝐷𝐴C𝐵𝐶 − 2𝐷𝐵 (N𝐵𝐶C𝐴𝐶 )

+ 1

2
𝐷𝐴 (N𝐵𝐶C𝐵𝐶 ) − 1

2
𝑢𝐷𝐴 (N𝐵𝐶N𝐵𝐶 )

)
• C𝐴𝐵 (𝑢, 𝜽 ) ≔ 𝐶𝐴𝐵 (𝑢−𝐶− (𝜽 ) , 𝜽 ) −𝐶−

𝐴𝐵 (𝜽 ) , N𝐴𝐵 (𝑢, 𝜽 ) ≔ 𝑁𝐴𝐵 (𝑢−𝐶− (𝜽 ) , 𝜽 )

ΔJ ≔

︷                 ︸︸                 ︷
𝐹𝐽 + 𝑗 (Δ𝑀,𝐶− ) + 𝑗 (𝑀+, Δ𝑆)︸        ︷︷        ︸

Soft/Static Flux

Δ
(stat)
J =

∫
d2Ω

8𝜋
𝑀+

(
2𝑌 𝐴𝐷𝐴Δ𝑆 − Δ𝑆𝐷𝐴𝑌

𝐴
)



Supertranslation invariance
J+ − J − = −ΔJ ΔJ = Δ

(rad)
J + Δ

(stat)
J

Supertranslation 𝑢 = 𝑢 − 𝛼ℓ≥2 (𝜽 )

𝐶± = 𝐶± + 𝛼(𝜽 ) , 𝐶′
𝐴𝐵 (𝑢) = 𝐶𝐴𝐵 (𝑢 + 𝛼) , �̃�𝐴𝐵 (𝑢) = 𝑁𝐴𝐵 (𝑢 + 𝛼)

• When ¤𝑀 = 0, 𝑀 is invariant −→ 𝑀± and Δ𝑀 are invariant
• Δ𝑆 = Δ𝑍 + Δ𝐶 is invariant.
• C𝐴𝐵 and N𝐴𝐵 are invariant under supertranslation

C𝐴𝐵 (𝑢, 𝜽 ) ≔ 𝐶𝐴𝐵 (𝑢−𝐶− (𝜽 ) , 𝜽 ) −𝐶−
𝐴𝐵 (𝜽 ) , N𝐴𝐵 (𝑢, 𝜽 ) ≔ 𝑁𝐴𝐵 (𝑢−𝐶− (𝜽 ) , 𝜽 )

Δ
(rad)
J =

∫
d𝑢d2Ω

32𝜋𝐺
𝑌 𝐴

(
N𝐵𝐶𝐷𝐴C𝐵𝐶 − 2𝐷𝐵 (N𝐵𝐶C𝐴𝐶 )

+ 1

2
𝐷𝐴 (N𝐵𝐶C𝐵𝐶 ) − 1

2
𝑢𝐷𝐴 (N𝐵𝐶N𝐵𝐶 )

)
• Manifestly invariant under supertranslation

Δ
(stat)
J =

∫
d2Ω

8𝜋
𝑀+

(
2𝑌 𝐴𝐷𝐴Δ𝑆 − Δ𝑆𝐷𝐴𝑌

𝐴
)

• Manifestly invariant under supertranslation



Solution to the first puzzle

J+ − J − = −ΔJ ΔJ = Δ
(rad)
J + Δ

(stat)
J

Δ
(rad)
J =

∫
d𝑢d2Ω

32𝜋𝐺
𝑌 𝐴

(
N𝐵𝐶𝐷𝐴C𝐵𝐶 − 2𝐷𝐵 (N𝐵𝐶C𝐴𝐶 )

+ 1

2
𝐷𝐴 (N𝐵𝐶C𝐵𝐶 ) − 1

2
𝑢𝐷𝐴 (N𝐵𝐶N𝐵𝐶 )

)
• Manifestly invariant under supertranslation

• {C𝐴𝐵 ,N𝐴𝐵 } ∼ 𝑂 (𝐺2 ), hence Δ
(rad)
J ∼ 𝑂 (𝐺3 )

• Consistent with definition of invariant angular momentum
G. Compère, R. Oliveri, A. Seraj [1912.03164], G. Veneziano, G. A. Vilkovisky [2201.11607],
R. Javadinezhad, U. Kol, M. Porrati [2202.03442]

Δ
(stat)
J =

∫
d2Ω

8𝜋
𝑀+

(
2𝑌 𝐴𝐷𝐴Δ𝑆 − Δ𝑆𝐷𝐴𝑌

𝐴
)

• Manifestly invariant under supertranslation

• 𝑀+ ∼ 𝑂 (1), Δ𝑆 ∼ 𝑂 (𝐺2 ), hence Δ
(stat)
J ∼ 𝑂 (𝐺2 )

• Depends on the memory Δ𝐶𝐴𝐵 ≡ −(2𝐷𝐴𝐷𝐵 − Ω𝐴𝐵𝐷
2 )Δ𝐶

T. Damour [2010.01641]



Result up to 𝐺2

𝑛𝜇 = (1, sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃 ) , 𝑛𝜇 = (1, − sin 𝜃 cos 𝜙, − sin 𝜃 sin 𝜙, − cos 𝜃 ) , 𝜕𝐴 = (𝜕𝐴𝑛
𝜇 )ð𝜇

ΔJ𝜇𝜈 = −Δ 𝜇𝜈

J (stat) +𝑂 (𝐺3 )

Δ
𝜇𝜈

J (stat) =

∫
d2Ω

4𝜋
𝑀+

[
2ð[𝜇Δ𝑆 − Δ𝑆𝑛 [𝜇

]
𝑛𝜈 ]

• Δ𝑆 =

2∑︁
𝑎=1

[
2𝐺 (𝑛 · 𝑝𝑎 ) log

(
−𝑛 · 𝑝𝑎
𝑚𝑎

) ]+∞
−∞

+𝑂 (𝐺ΔE) , 𝑀+ =

2∑︁
𝑎=1

𝑚𝑎

(−𝑛 · 𝑝+
𝑎 )3

Δ
𝜇𝜈

J = Δ
𝜇𝜈

J (stat) +𝑂 (𝐺3 ) = 2𝐺2𝑚1𝑚2

𝑏2

2𝛾2 − 1√︁
𝛾2 − 1

I(𝛾)𝑏 [𝜇 (𝑝𝜈 ]
1− − 𝑝

𝜈 ]
2− ) +𝑂 (𝐺3 )

• Agreement in all Bondi frame at 𝐺2 with Δ𝐽
𝜇𝜈

QFT
A. V. Manohar, A. K. Ridgway, C.-H. Shen [2203.04283],
P. Di Vecchia et al. [2203.11915-2210.12118]

• Agreement up to 𝑂 (𝐺3 ) with soft flux
P. Di Vecchia et al. [2203.11915-2210.12118]



Special case of the binary’s center of mass

𝑓 ±𝐴𝐵 → lim
𝑟→∞

𝑟ℎ±𝜇𝜈

• In Lorentz indices 𝐶𝐴𝐵 → lim
𝑟→∞

𝑟ℎ𝜇𝜈

• 𝑟𝜇 = 𝑛𝜇 − �̂�𝜇 = (0, sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃 )

• Spherical harmonics decomposition 𝑀± = (3𝑟 − �̂� ) · 𝑃± + 1

4𝐺
𝐷𝐴𝐷𝐵

︷︸︸︷
𝑓 ±𝐴𝐵

Δ
𝜇𝜈

J (stat) =

∫
d𝑢dΩ
32𝜋𝐺

𝑟2
[
4ℎ𝜌 [𝜇− ¤ℎ𝜈 ]

𝜌 − 2 ¤ℎ𝜌𝜎𝑛 [𝜇ð𝜈 ]ℎ𝜌𝜎− − 𝑛 [𝜇𝑛𝜈 ] ¤ℎ𝜌𝜎ℎ𝜌𝜎−

]
+
∫

dΩ
4𝜋

(3𝑟 · 𝑃− )︸      ︷︷      ︸ [
2ð[𝜇Δ𝑆 − Δ𝑆𝑛 [𝜇

]
𝑛𝜈 ] − (3�̂� · 𝑃− )

∫
dΩ
4𝜋

Δ𝑆 𝑛 [𝜇𝑛𝜈 ]︸  ︷︷  ︸ +𝑂 (𝐺3 )

• 𝑟 · (𝑝−
1 + 𝑝−

2 ) = 0 in the initial c.m.

• 𝑛 [𝜇𝑛𝜈 ] contributes only to 0𝑖 components

• Spatial component of first line gives Thorne-DeWitt formula at 𝑂 (𝐺2 )
• Without Δ𝐶 and Δ𝑍, the final result would not be covariant



Comparison with other proposal

J − = 𝐽− − 𝑗 (𝑀− , 𝐶− ) , J+ = 𝐽+ − 𝑗 (𝑀+, 𝐶+ ) − 𝑗 (𝑀+, Δ𝑍 )

𝐽(inv) (𝜎) = 𝐽 (𝜎) − 𝑗 (𝑀 (𝜎) , 𝐶 (𝜎) )

G. Compère, R. Oliveri, A. Seraj [1912.03164]

P.-N. Chen et al. [2102.03235 - 2107.05316], P. Mao, J.-B. Wu, X. Wu [arXiv:2301.08032]

ΔJ − Δ𝐽(inv) = − 𝑗 (𝑀+, Δ𝑍 )

𝐽(JP) (𝜎) = 𝐽 (𝜎) − 𝑗 (𝑀 (𝜎) , 𝐶− ) + 𝑗
(
𝑀 (𝜎) , C(𝜽 )

)
R. Javadinezhad, U. Kol, M. Porrati [2202.03442], R. Javadinezhad, M. Porrati [2211.06538]

ΔJ − Δ𝐽(JP) = − 𝑗 (Δ𝑀, C(𝜽 ) ) − 𝑗 (𝑀+, Δ𝐶 ) − 𝑗 (𝑀+, Δ𝑍 )

• − 𝑗
(
𝑀 (𝜎) , C(𝜽 )

)
− 𝑗 (𝑀+, Δ𝐶 ) = 𝑂 (𝐺3 )

• Agreement on the radiative flux
• Disagreement on the soft part outside of the c.m. frame because of 𝑗 (𝑀+, Δ𝑍 )
• Δ𝐽(inv) and Δ𝐽(JP) are not Lorentz-covariant



Conclusions and Future directions

J − = 𝐽− − 𝑗 (𝑀− , 𝐶− ) , J+ = 𝐽+ − 𝑗 (𝑀+, 𝐶+ ) − 𝑗 (𝑀+, Δ𝑍 )

J+ − J − = −Δ(rad)
J − Δ

(stat)
J

• New definition of supertranslation invariant definition of the angular momen-
tum J𝜇𝜈 for the two-body scattering

• Resolution of the two puzzles
• Key role plays by 𝑗 (𝑀+, Δ𝑍 )

• Properly define 𝑗 (𝑀+, Δ𝑍 ) for generic gravitational system
• Compare the 𝑂 (𝐺3 ) contribution → compute NLO 𝐶𝐴𝐵 (𝑢, 𝜽 )
• Understand the effect of non-linear memory → compute 𝑂 (𝐺4 )

A. Strominger, A. Zhiboedov [1411.5745]

S. Pasterski, A. Strominger, A. Zhiboedov [1502.06120]

M. Campiglia, A. Laddha [1509.01406]

• New way of computing ΔJ
A. V. Manohar, A. K. Ridgway, C.-H. Shen [2203.04283]

P. Di Vecchia et al. [2203.11915-2210.12118], D. Bini, T. Damour [2211.06340]

Thank you for your attention!



State of the Art of the PM Approximation (point-particles)
0PN 1PN 2PN 3PN 4PN 5PN 6PN

1PM 1 𝑣2 𝑣4 𝑣6 𝑣8 𝑣10 𝑣12 . . . 𝐺1

2PM 1 𝑣2 𝑣4 𝑣6 𝑣8 𝑣10 . . . 𝐺2

3PM 1 𝑣2 𝑣4 𝑣6 𝑣8 . . . 𝐺3

4PM 1 𝑣2 𝑣4 𝑣6 . . . 𝐺4

5PM 1 𝑣2 𝑣4 . . . 𝐺5

• 3PM conservative dynamics
Z. Bern et al. [1908.01493] G. Kälin, Z. Liu, R. A. Porto [2007.04977]

• 3PM radiative dynamics
E. Herrmann et al. [2101.07255 - 2104.03957], G. U. Jakobsen et al. [2101.12688],
S. Mougiakakos, MMR, F. Vernizzi [2102.08339], MMR, F. Vernizzi [2110.10140]

• 3PM conservative + radiative alternative methods
P. Di Vecchia et al. [2008.12743 - 2101.05772 - 2104.03256 - 2210.12118]

N. E. Bjerrum-Bohr et al. [2104.04510 - 2105.05218]

G. Kälin, J. Neef, R. A. Porto [2207.00580], G. U. Jakobsen et al. [2207.00569]

• 4PM Conservative dynamics
Z. Bern et al. [2101.07254 - 2112.10750] C. Dlapa et al. [2106.08276 - 2112.11296]

• 4PM Conservative + Radiative dynamics
C. Dlapa et al. [2210.05541 - 2304.01275]



Two-parameter family for 𝐽 (𝜎)
𝑁𝐴 ≔ 𝑁𝐴 − 𝑢𝐷𝐴𝑀

two-parameter family of angular momentum

𝐽 (𝛼,𝛽) (𝜎) =
∫
𝜎

d2Ω

8𝜋𝐺
𝑌 𝐴

(
𝐺�̂�𝐴 − 𝛽

16
𝐷𝐴 (𝐶𝐵𝐶𝐶𝐵𝐶 ) − 𝛼

4
𝐶𝐴𝐵𝐷𝐶𝐶𝐵𝐶

)
,

G. Compère, R. Oliveri, A. Seraj [1912.03164], A. Elhashash, D. A. Nichols [2101.12228]

• Flat spacetime Bondi functions

𝑀 = 0, 𝑁𝐴 = 0, 𝐶𝐴𝐵 = (2𝐷𝐴𝐷𝐵 − Ω𝐴𝐵𝐷
2 )Φ

Flat spacetime angular momentum

𝐽 (𝛼,𝛽) (𝜎) = (𝛽 − 𝛼)
∫
𝜎

d2Ω

256𝜋𝐺

(
𝐷𝐴𝑌

𝐴
) [
(𝐷2Φ)2 − 4𝐷𝐶Φ𝐷𝐶Φ

]
,

• Vanishes for 𝛼 = 𝛽

• For 𝛼 = 𝛽 = 1 it is balanced by the flux of R. M. Wald, A. Zoupas [gr-qc/9911095]

• For non-radiative to non-radiative transition, one can relax the previous con-
dition and find the same results

A. Elhashash, D. A. Nichols [2101.12228]
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