Balance Laws in Gravitational Two-Body Scattering

Massimiliano Maria Riva

Based on work with F. Vernizzi and L. K. Wong [2302.09065]

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

at Niels Bohr Institute, Copenhagen (DK), 15 June 2023

Outline

The Gravitational Two-Body Problem

One Problem, Many Approaches The Post-Minkowskian Expansion

The Balance Laws and Angular Momentum Puzzles

The importance of Balance Laws Supertranslation puzzle Non-covariance puzzle

The Mechanical Angular Momentum

The BMS formalism New definition of Angular Momentum

The Angular Momentum Flux

Supertranslation invariance Special case of the binary's center of mass Comparison with other proposal

Conclusions and Future directions

One Problem, Many Approaches

Figure: LIGO and VIRGO scientific collaboration, [1602.03837].

W. Goldberger [hep-ph/0701129], S. Foffa, R. Sturani [1309.3474],

R. A. Porto [1601.04914]

The Post-Minkowskian Expansion

Two main methods:

• Classical physics from full scattering amplitude

$$\langle p_4, p_3 | S | p_1, p_2 \rangle = 1 + i \mathcal{M}(q^2)$$

D. Neill, I. Z. Rothstein [1304.7263], N. E. J. Bjerrum-Bohr et al. [1806.04920], Z. Bern et al. [1908.01493], E. Herrmann et al. [2104.03957], N. E. Bjerrum-Bohr et al. [2104.04510], P. Di Vecchia et al. [2104.03256 - 2210.12118].

• Classical Effective Field Theory approach

$$e^{iS_{\text{eff}}[x_a]} = \int \mathcal{D}[h] e^{i(S_{\text{grav}}+S_{\text{GF}}+S_{\text{sources}})}$$

W. D. Goldberger, I. Z. Rothstein [hep-th/0409156], G. Kälin, R. A. Porto [2006.01184]
 G. Mogull, J. Plefka, J. Steinhoff [2010.02865]

The importance of Balance Laws

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -\mathcal{F}_E \qquad \qquad \frac{\mathrm{d}J}{\mathrm{d}t} = -\mathcal{F}_J$$

Bound case

Wave phase from the instantaneous flux

$$\Delta \phi(t) \propto \int \mathrm{d}v \, v^3 \frac{\mathrm{d}E/\mathrm{d}v}{\mathcal{F}_E}$$

W. D. Goldberger, I. Z. Rothstein [hep-th/0409156], T. Damour et al. [1110.2938]
 L. Blanchet [1310.1528 - 1812.07490]

Supertranslation puzzle

DeWitt-Thorne Formula

$$u \coloneqq t - r$$

$$\Delta J_{\rm DWT}^{ij} = \int \frac{\mathrm{d} u \mathrm{d} \Omega}{32\pi G} r^2 \left(2h_{\rm TT}^{a[i} \dot{h}_{\rm TT}^{j]a} - \dot{h}_{\rm TT}^{ab} x^{[i} \partial^{j]} h_{\rm TT}^{ab} \right) = O(G^2)$$

• Linear response gives the correct radiation-reaction contribution

$$2\chi_{\rm rad}^{\rm LO} = \overbrace{\frac{\partial \chi_{\rm cons}}{\partial J}}^{O(G)} \Delta J_{\rm DWT} = O(G^3)$$

T. Damour [2010.01641]

Supertranslation ambiguity

- In the BMS formalism, J is not supertranslation invariant E. T. Newman R. Penrose J. Math. Phys. 7 (1966), A. Ashtekar, T. De Lorenzo, N. Khera [1910.02907]
- $\Delta J^{ij} = O(G^2) \xrightarrow[ST]{} \Delta J^{ij} = O(G^3)$
 - G. Veneziano, G. A. Vilkovisky [2201.11607]
- Invariant definition of $J_{(inv)}$ leads to $\Delta J_{(inv)}^{ij} = O(G^3)$
 - G. Compère, R. Oliveri, A. Seraj [1912.03164],
 - R. Javadinezhad, U. Kol, M. Porrati [2202.03442]

Non-covariance puzzle

The BMS formalism

Adapted coordinates (u,r,θ^A) with A=1,2

• Hypersurfaces of constant \boldsymbol{u} are null

$$g^{\mu\mu} = 0$$

• $\theta^A = \text{const along the null-rays}$

 $g^{uA} = 0$

• Surface element $r, u = {\rm const}$ is $r^2 d^2 \Omega$

 $\det(g_{AB})=r^2\det(\Omega_{AB})$

 Ω_{AB} metric of the 2-sphere.

Most generic metric

$$ds^2 = -\mu e^{2\beta} \mathrm{d} u^2 - 2 e^{2\beta} \mathrm{d} u \mathrm{d} r + \gamma_{AB} (r \mathrm{d} \theta^A + W^A \mathrm{d} u) (r \mathrm{d} \theta^B + W^B \mathrm{d} u)$$

H. Bondi Nature 186,(1960), R. K. Sachs Proc. R. Soc. Lond. A 270, (1962)

H. Bondi, M. G. J. van der Burg, A. W. K. Metzner Proc. R. Soc. Lond. A 269, (1962)

The BMS formalism

$$ds^2 = -\mu e^{2\beta} \mathrm{d} u^2 - 2 e^{2\beta} \mathrm{d} u \mathrm{d} r + \gamma_{AB} (r \mathrm{d} \theta^A + W^A \mathrm{d} u) (r \mathrm{d} \theta^B + W^B \mathrm{d} u)$$

- $\mathfrak{Z}^+(\mathfrak{T}^-) \to$ future (past) time-like infinities, where massless particles end up (come from)
- Asymptotic expansion near $\mathfrak{I}^{\!+}$ to study emitted radiation

$$D_A \Omega_{CD} = 0, \dot{X} \equiv \partial_u X$$

Asymptotic Metric near \mathfrak{I}^+

$$\mu = 1 - \frac{2GM}{r} + \dots, \quad \gamma_{AB} = \Omega_{AB} + \frac{1}{r} C_{AB} + \dots, \quad \beta = -\frac{1}{32r^2} C_{AB} C^{AB} + \dots$$
$$W^A = \frac{1}{2r} D_B C^{AB} + \frac{1}{r^2} \left(\frac{2}{3} G N^A - \frac{1}{16} D^A (C^{BC} C_{BC}) + \frac{1}{2} C^{AB} D^C C_{BC} \right) + \dots$$
$$M(u, \theta) \to \text{Mass Aspect}, \qquad N_A(u, \theta) \to \text{Angular Momentum Aspect}$$
$$C_{AB}(u, \theta) \to \text{Shear Tensor} \qquad N_{AB}(u, \theta) \equiv \dot{C}_{AB}(u, \theta) \to \text{News Tensor}$$

The BMS formalism

• Symmetries that preserve asymptotic flatness

$$\delta g_{\mu\nu}\big|_{\mathfrak{I}^+} = (\mathcal{L}_{\xi}g)_{\mu\nu}\big|_{\mathfrak{I}^+} = 0$$

- Metric near \mathfrak{I}^+ determined by $M,\,N_A$ and C_{AB}
- Flat spacetime not unique but changes under supertranslation

$$C_{AB} = 0 \xrightarrow[\text{ST}]{} C_{AB} = -(2D_A D_B - \Omega_{AB} D^2) \alpha \neq 0$$

BMS Linear Momentum and Flux

BMS Supermomentum and Flux

$$P(\sigma_+)-P(\sigma_-)=-F_P(\mathcal{N}),$$

$$\begin{split} P(\sigma) &= \int_{\sigma} \frac{\mathrm{d}^2 \Omega}{4\pi} \, \alpha M \,, \\ F_P(\mathcal{N}) &= \int_{\mathcal{N}} \frac{\mathrm{d} u \mathrm{d}^2 \Omega}{32\pi G} \, \alpha (N^{AB} N_{AB} - 2 D_A D_B N^{AB}) \end{split}$$

R. M. Wald, A. Zoupas [gr-qc/9911095]
 É. É. Flanagan and D. A. Nichols [1510.03386]

 $P(\mathfrak{I}^+_+)-P(\mathfrak{I}^+_-)=-F_P(\mathfrak{I}^+)\,,$

- The $\ell \leq 1$ harmonics give the linear momentum balance law
- Confirmed explicitly up to $O(G^3)$
- Flux coincides with DeWitt-Thorne formula

$$C_{AB} \rightarrow \lim_{r \to \infty} r h_{\mu\nu}^{\rm TT}(x)$$

BMS Angular Momentum and Flux

BMS Angular Momentum and Flux

$$\begin{split} \hat{N}_A &\coloneqq N_A - u D_A M \\ J(\sigma) &= \int_{\sigma} \frac{\mathrm{d}^2 \Omega}{8 \pi G} \, Y^A \bigg(G \hat{N}_A - \frac{1}{16} D_A (C_{BC} C^{BC}) - \frac{1}{4} C_{AB} D_C C^{BC} \bigg), \\ F_J(\mathcal{N}) &= \int_{\mathcal{N}} \frac{\mathrm{d} u \mathrm{d}^2 \Omega}{32 \pi G} \, Y^A \bigg(N^{BC} D_A C_{BC} - 2 D_B (N^{BC} C_{AC}) \\ &\quad + \frac{1}{2} D_A (N^{BC} C_{BC}) - \frac{1}{2} u D_A (N^{BC} N_{BC}) \bigg) \end{split}$$

R. M. Wald, A. Zoupas [gr-qc/9911095], É. É. Flanagan and D. A. Nichols [1510.03386]

- $J(\sigma_+) J(\sigma_-) = -F_J(\mathcal{N})$
- Spatial components of the flux gives the DeWitt-Thorne formula

$$C_{AB} \to \lim_{r \to \infty} r h_{\mu\nu}^{\mathrm{TT}}(x)$$

• $J(\sigma)$ generically different from mechanical angular momentum

Pedagogical example: Boosted Schwarzschild

$$\begin{split} M &= m^4/(-n \cdot p)^3 \qquad \hat{N}_A = 3MD_A(B+S) + (B+S)D_AM\\ C_{AB} &= -(2D_AD_B - \Omega_{AB}D^2)S \end{split}$$

•
$$B = (n \cdot b)$$
 translation of amount b^{μ}

•
$$S = 2G(n \cdot p) \log\left(\frac{-n \cdot p}{m}\right) + \beta$$

• Bondi momentum *P* coincides with momentum of the system

 $J = \mathcal{J} + j(M, S)$

- j(M, S) is the supertranslation ambiguity
- Choose β such that S = 0.

New definition of Angular Momentum

The Angular Momentum Flux • $\Delta M = M^+ - M^-$, $\Delta C = C^+ - C^-$, $\Delta Z = Z^+ - Z^-$, $\Delta S = \Delta Z + \Delta C$. $\mathcal{J}^{\pm} = \mathcal{J}^{\pm} - \mathcal{J}(M^{\pm}, S^{\pm})$ Asymptotic Bondi \mathcal{J} Different supertranslations at \mathfrak{I}^{\pm}_{\pm} $S^{\pm} = \mathbb{Z}^{\pm} + \mathbb{C}^{\pm} + \beta$

- Freedom to fix β to remove either S^{\pm} but not both at the same time
- Set $Z^- = 0$ to "restore" the origin at \mathfrak{I}^+_- , then $Z^+ = \Delta Z$.

$$\mathcal{J}^- = J^- - j(M^-, C^-), \qquad \mathcal{J}^+ = J^+ - j(M^+, C^+) - j(M^+, \Delta Z)$$

$$\mathcal{J}^+ - \mathcal{J}^- = -\Delta_{\mathcal{J}}$$

New Angular Momentum Flux

$$\Delta_{\mathcal{J}} \coloneqq F_J + j(\Delta M, C^-) + j(M^+, \Delta S)$$

- Bondi angular momentum balance law $J^+ J^- = -F_J$
- Rewrite $j(M^+,C^+)-j(M^-,C^-)=j(\Delta M,C^-)+j(M^+,\Delta C)$

$$\label{eq:main_state} \begin{array}{l} \text{The Angular Momentum Flux} \\ \bullet \ \Delta M = \frac{1}{4G} D^A D^B \int_{-\infty}^{+\infty} \mathrm{d} u \, N_{AB} - \frac{1}{8G} \int_{-\infty}^{+\infty} \mathrm{d} u \, N_{AB} N^{AB} \qquad N_{AB} \equiv \dot{C}_{AB} \end{array}$$

Radiative Flux

$$\begin{split} \Delta_{\mathcal{J}}^{(\mathrm{rad})} &= \int \frac{\mathrm{d} u \mathrm{d}^2 \Omega}{32\pi G} Y^A \bigg(\mathbb{N}^{BC} D_A \mathbb{C}_{BC} - 2 D_B (\mathbb{N}^{BC} \mathbb{C}_{AC}) \\ &+ \frac{1}{2} D_A (\mathbb{N}^{BC} \mathbb{C}_{BC}) - \frac{1}{2} u D_A (\mathbb{N}^{BC} \mathbb{N}_{BC}) \bigg) \\ \mathbb{C}_{AB}(u, \theta) \coloneqq C_{AB}(u - C^-(\theta), \theta) - C_{AB}^-(\theta), \qquad \mathbb{N}_{AB}(u, \theta) \coloneqq N_{AB}(u - C^-(\theta), \theta) \end{split}$$

Soft/Static Flux

$$\Delta_{\mathcal{J}}^{(\text{stat})} = \int \frac{\mathrm{d}^2 \Omega}{8\pi} M^+ \Big(2Y^A D_A \Delta S - \Delta S D_A Y^A \Big)$$

Supertranslation invariance

$$\mathcal{J}^+ - \mathcal{J}^- = -\Delta_{\mathcal{J}} \qquad \Delta_{\mathcal{J}} = \Delta_{\mathcal{J}}^{(\mathrm{rad})} + \Delta_{\mathcal{J}}^{(\mathrm{stat})}$$

Supertranslation $\tilde{u} = u - \alpha_{\ell \geq 2}(\theta)$

$$\tilde{C}^{\pm} = C^{\pm} + \alpha(\theta), \quad \tilde{C}'_{AB}(\tilde{u}) = C_{AB}(\tilde{u} + \alpha), \quad \tilde{N}_{AB}(\tilde{u}) = N_{AB}(\tilde{u} + \alpha)$$

- When $\dot{M} = 0$, M is invariant $\longrightarrow M^{\pm}$ and ΔM are invariant
- $\Delta S = \Delta Z + \Delta C$ is invariant.
- \mathbb{C}_{AB} and \mathbb{N}_{AB} are invariant under supertranslation

$$\mathbb{C}_{AB}(u,\theta) \coloneqq C_{AB}(u-C^{-}(\theta),\theta) - C^{-}_{AB}(\theta), \qquad \mathbb{N}_{AB}(u,\theta) \coloneqq N_{AB}(u-C^{-}(\theta),\theta)$$

$$\begin{split} \Delta_{\mathcal{J}}^{(\mathrm{rad})} &= \int \frac{\mathrm{d} u \mathrm{d}^2 \Omega}{32\pi G} Y^A \bigg(\mathbb{N}^{BC} D_A \mathbb{C}_{BC} - 2 D_B (\mathbb{N}^{BC} \mathbb{C}_{AC}) \\ &+ \frac{1}{2} D_A (\mathbb{N}^{BC} \mathbb{C}_{BC}) - \frac{1}{2} u D_A (\mathbb{N}^{BC} \mathbb{N}_{BC}) \bigg) \end{split}$$

• Manifestly invariant under supertranslation

$$\Delta_{\mathcal{J}}^{(\text{stat})} = \int \frac{\mathrm{d}^2 \Omega}{8\pi} M^+ \Big(2Y^A D_A \Delta S - \Delta S D_A Y^A \Big)$$

• Manifestly invariant under supertranslation

Solution to the first puzzle

$$\mathcal{J}^{+} - \mathcal{J}^{-} = -\Delta_{\mathcal{J}} \qquad \Delta_{\mathcal{J}} = \Delta_{\mathcal{J}}^{(\mathrm{rad})} + \Delta_{\mathcal{J}}^{(\mathrm{stat})}$$

$$\begin{split} \Delta_{\mathcal{J}}^{(\mathrm{rad})} &= \int \frac{\mathrm{d} u \mathrm{d}^2 \Omega}{32\pi G} Y^A \bigg(\mathbb{N}^{BC} D_A \mathbb{C}_{BC} - 2 D_B (\mathbb{N}^{BC} \mathbb{C}_{AC}) \\ &+ \frac{1}{2} D_A (\mathbb{N}^{BC} \mathbb{C}_{BC}) - \frac{1}{2} u D_A (\mathbb{N}^{BC} \mathbb{N}_{BC}) \bigg) \end{split}$$

- Manifestly invariant under supertranslation
- $\{\mathbb{C}_{AB}, \mathbb{N}_{AB}\} \sim O(G^2)$, hence $\Delta_{\mathcal{J}}^{(\mathrm{rad})} \sim O(G^3)$
- Consistent with definition of invariant angular momentum
- G. Compère, R. Oliveri, A. Seraj [1912.03164], G. Veneziano, G. A. Vilkovisky [2201.11607],
 R. Javadinezhad, U. Kol, M. Porrati [2202.03442]

$$\Delta_{\mathcal{J}}^{(\text{stat})} = \int \frac{\mathrm{d}^2 \Omega}{8\pi} M^+ \Big(2Y^A D_A \Delta S - \Delta S D_A Y^A \Big)$$

- Manifestly invariant under supertranslation
- $M^+ \sim O(1), \Delta S \sim O(G^2), \text{ hence } \Delta_{\mathcal{J}}^{(\text{stat})} \sim O(G^2)$
- Depends on the memory $\Delta C_{AB} \equiv -(2D_AD_B \Omega_{AB}D^2) \Delta C$
- T. Damour [2010.01641]

Result up to G^2

 $n^{\mu} = (1, \sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta), \quad \bar{n}^{\mu} = (1, -\sin\theta\cos\phi, -\sin\theta\sin\phi, -\cos\theta), \quad \partial_{A} = (\partial_{A}n^{\mu})\delta_{\mu}$

$$\Delta \mathcal{J}^{\mu\nu} = -\Delta_{\mathcal{J}\,(\text{stat})}^{\mu\nu} + O(G^3)$$
$$\Delta_{\mathcal{J}\,(\text{stat})}^{\mu\nu} = \int \frac{\mathrm{d}^2\Omega}{4\pi} M^+ \Big[2\delta^{[\mu}\Delta S - \Delta S\bar{n}^{[\mu]} \Big] n^{\nu}$$

•
$$\Delta S = \sum_{a=1}^{2} \left[2G(n \cdot p_a) \log \left(\frac{-n \cdot p_a}{m_a} \right) \right]_{-\infty}^{+\infty} + O(G\Delta \mathcal{E}), \qquad M^+ = \sum_{a=1}^{2} \frac{m_a}{(-n \cdot p_a^+)^3}$$

$$\Delta_{\mathcal{J}}^{\mu\nu} = \Delta_{\mathcal{J}(\text{stat})}^{\mu\nu} + O(G^3) = \frac{2G^2m_1m_2}{b^2} \frac{2\gamma^2 - 1}{\sqrt{\gamma^2 - 1}} I(\gamma) b^{[\mu}(p_{1-}^{\nu]} - p_{2-}^{\nu]}) + O(G^3)$$

Agreement in all Bondi frame at G² with ΔJ^{μν}_{QFT}
 A. V. Manohar, A. K. Ridgway, C.-H. Shen [2203.04283],
 P. Di Vecchia et al. [2203.11915-2210.12118]

Special case of the binary's center of mass

 $f_{AB}^{\pm} \rightarrow \lim_{r \rightarrow \infty} r h_{\mu\nu}^{\pm}$

• $\hat{r}^{\mu} = n^{\mu} - \hat{t}^{\mu} = (0, \sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$

• Spherical harmonics decomposition $M^{\pm} = (3\hat{r} - \hat{t}) \cdot P^{\pm} + \frac{1}{4G} D^A D^B f_{AB}^{\pm}$

$$\begin{split} \Delta_{\mathcal{J}(\text{stat})}^{\mu\nu} &= \int \frac{\mathrm{d}u \mathrm{d}\Omega}{32\pi G} r^2 \Big[4h_-^{\rho[\mu} \dot{h}^{\nu]}{}_{\rho} - 2\dot{h}_{\rho\sigma} n^{[\mu} \delta^{\nu]} h_-^{\rho\sigma} - n^{[\mu} \bar{n}^{\nu]} \dot{h}_{\rho\sigma} h_-^{\rho\sigma} \Big] \\ &+ \int \frac{\mathrm{d}\Omega}{4\pi} \underbrace{(3\hat{r} \cdot P_-)}_{\mathbf{v}} \Big[2\delta^{[\mu} \Delta S - \Delta S \bar{n}^{[\mu]} \Big] n^{\nu]} - (3\hat{r} \cdot P_-) \int \frac{\mathrm{d}\Omega}{4\pi} \Delta S \ \bar{n}^{[\mu} n^{\nu]} + O(G^3) \end{split}$$

$$\bullet \ \hat{r} \cdot (p_1^- + p_2^-) = 0 \text{ in the initial c.m.}$$

$$\bullet \ \bar{n}^{[\mu} n^{\nu]} \text{ contributes only to } 0i \text{ components} \end{split}$$

$$\bullet \text{ Spatial component of first line gives Thorne-DeWitt formula at } O(G^2)$$

• Without ΔC and ΔZ , the final result would not be covariant

Comparison with other proposal

$$\mathcal{J}^{-} = J^{-} - j(M^{-}, C^{-}), \qquad \mathcal{J}^{+} = J^{+} - j(M^{+}, C^{+}) - j(M^{+}, \Delta Z)$$

$$J_{(\mathrm{inv})}(\sigma) = J(\sigma) - j(M(\sigma), C(\sigma))$$

G. Compère, R. Oliveri, A. Seraj [1912.03164]

P.-N. Chen et al. [2102.03235 - 2107.05316], P. Mao, J.-B. Wu, X. Wu [arXiv:2301.08032]

$$\Delta \mathcal{J} - \Delta J_{(\text{inv})} = -j(M^+, \Delta Z)$$

$$J_{(\mathrm{JP})}(\sigma) = J(\sigma) - j(M(\sigma), C^{-}) + j\big(M(\sigma), C(\theta)\big)$$

R. Javadinezhad, U. Kol, M. Porrati [2202.03442], R. Javadinezhad, M. Porrati [2211.06538]

$$\Delta \mathcal{J} - \Delta J_{(\mathrm{JP})} = -j(\Delta M, C(\theta)) - j(M^+, \Delta C) - j(M^+, \Delta Z)$$

•
$$-j(M(\sigma), C(\theta)) - j(M^+, \Delta C) = O(G^3)$$

• Agreement on the radiative flux

• Disagreement on the soft part outside of the c.m. frame because of $j(M^+, \Delta Z)$

• $\Delta J_{(inv)}$ and $\Delta J_{(JP)}$ are not Lorentz-covariant

Conclusions and Future directions

$$\begin{split} \mathcal{J}^- &= J^- - j(M^-, C^-), \qquad \mathcal{J}^+ = J^+ - j(M^+, C^+) - j(M^+, \Delta Z) \\ \mathcal{J}^+ - \mathcal{J}^- &= -\Delta_{\mathcal{J}}^{(\mathrm{rad})} - \Delta_{\mathcal{J}}^{(\mathrm{stat})} \end{split}$$

- New definition of supertranslation invariant definition of the angular momentum $\mathcal{J}^{\mu\nu}$ for the two-body scattering
- Resolution of the two puzzles
- Key role plays by $j(M^+, \Delta Z)$
- Properly define $j(M^+, \Delta Z)$ for generic gravitational system
- Compare the $O(G^3)$ contribution \rightarrow compute NLO $C_{AB}(u, \theta)$
- Understand the effect of non-linear memory \rightarrow compute $O(G^4)$
 - A. Strominger, A. Zhiboedov [1411.5745]
 - S. Pasterski, A. Strominger, A. Zhiboedov [1502.06120]
 - M. Campiglia, A. Laddha [1509.01406]
- New way of computing $\Delta \mathcal{J}$
 - A. V. Manohar, A. K. Ridgway, C.-H. Shen [2203.04283]
 - P. Di Vecchia et al. [2203.11915-2210.12118], D. Bini, T. Damour [2211.06340]

Thank you for your attention!

e of	the .	Art o	of th	e PM	I Ap	prox	imat	ion	(poi	nt-p
		0PN	$1 \mathrm{PN}$	2PN	3PN	4 PN	5PN	6 PN	-	
	$1\mathrm{PM}$	1	v^2	v^4	v^6	v^8	v^{10}	v^{12}		G^1
	$2\mathrm{PM}$		1	v^2	v^4	v^6	v^8	v^{10}		G^2
	3PM			1	v^2	v^4	v^6	v^8		G^3
	4PM				1	v^2	v^4	v^6		G^4
	$5 \mathrm{PM}$					1	v^2	v^4		G^5

State les

- 3PM conservative dynamics
 - Z. Bern et al. [1908.01493] G. Kälin, Z. Liu, R. A. Porto [2007.04977]
- 3PM radiative dynamics
 - E. Herrmann et al. [2101.07255 2104.03957], G. U. Jakobsen et al. [2101.12688],
 - S. Mougiakakos, MMR, F. Vernizzi [2102.08339], MMR, F. Vernizzi [2110.10140]
- 3PM conservative + radiative alternative methods
 - P. Di Vecchia et al. [2008.12743 2101.05772 2104.03256 2210.12118]
 - N. E. Bjerrum-Bohr et al. [2104.04510 2105.05218]
 - G. Kälin, J. Neef, R. A. Porto [2207.00580], G. U. Jakobsen et al. [2207.00569]
- 4PM Conservative dynamics

Z. Bern et al. [2101.07254 - 2112.10750] C. Dlapa et al. [2106.08276 - 2112.11296]

- 4PM Conservative + Radiative dynamics
 - C. Dlapa et al. [2210.05541 2304.01275]

Two-parameter family for $J(\sigma)$

 $\hat{N}_A \coloneqq N_A - uD_A M$

two-parameter family of angular momentum

$$J^{(\alpha,\beta)}(\sigma) = \int_{\sigma} \frac{\mathrm{d}^2 \Omega}{8\pi G} Y^A \left(G \hat{N}_A - \frac{\beta}{16} D_A(C_{BC} C^{BC}) - \frac{\alpha}{4} C_{AB} D_C C^{BC} \right)$$

G. Compère, R. Oliveri, A. Seraj [1912.03164], A. Elhashash, D. A. Nichols [2101.12228]

• Flat spacetime Bondi functions

$$M = 0, \qquad N_A = 0, \qquad C_{AB} = (2D_A D_B - \Omega_{AB} D^2)\Phi$$

Flat spacetime angular momentum

$$J^{(\alpha,\beta)}(\sigma) = (\beta - \alpha) \int_{\sigma} \frac{\mathrm{d}^2 \Omega}{256 \pi G} \left(D_A Y^A \right) \left[(D^2 \Phi)^2 - 4 D_C \Phi D^C \Phi \right].$$

- Vanishes for $\alpha = \beta$
- For $\alpha = \beta = 1$ it is balanced by the flux of R. M. Wald, A. Zoupas [gr-qc/9911095]
- For non-radiative to non-radiative transition, one can relax the previous condition and find the same results

A. Elhashash, D. A. Nichols [2101.12228]