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Neutrinos are elementary particles,

electrically neutral,

very light,

= indivisible

= no electric charge

= so light that we don't know their mass!

and superbly antisocial

= barely interact with matter
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The Elusive Neutrino
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The Elusive Neutrinos

• three neutrino types

• very small masses
(unknown origin)

• large mixing between flavour
and mass eigenstates
(unknown mechanism)

• impact on cosmology
(e.g. structure formation)

‹ unique probe of high-energy
Universe
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Standard Model of Particle Physics

(+ Higgs boson)

• Three neutrino flavours


• Very small masses   
(unknown origin)


• Large mixing between  
flavour and mass states 
(unknown mechanism)


• 2nd most abundant 
particle in the Universe 
(impact on cosmology)


• Unique probe of             
high-energy astrophysics
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The Elusive Neutrino
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Neutrinos are very light and very antisocial
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Who are we?
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Prof. Irene Tamborra
Assoc. Prof. D. Jason Koskinen Assoc. Prof. Oleg Ruchayskiy

Asst. Prof. Markus AhlersAsst. Prof. Mauricio Bustamante Asst. Prof. Shashank Shalgar

+ many excellent 
Postdocs, PhDs, 

Master & Bachelor 
students
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Neutrinos as Cosmic Messengers
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Unique abilities of cosmic neutrinos:


no deflection in magnetic fields 

(unlike cosmic rays)


no absorption in cosmic backgrounds

(unlike gamma-rays)


smoking-gun of 

unknown sources of cosmic rays


coincident with 

photons and gravitational waves


BUT, very difficult to detect!

cosm
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Powerful Probes in Astrophysics
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1.  Energy Distribution

dN⌫

dE⌫

E⌫

⌫e ⌫µ
⌫⌧

2.  Flavour Ratios 3. Light Curve

Neutrinos provide us with:

The Sun Gamma-ray BurstsSupernovae

Neutrinos are copiously produced in astrophysical sources, e.g., 

Active Galaxies



Particle Astrophysics Ahlers, Bustamante, Koskinen, Ruchayskiy & Tamborra

Grand Unified Neutrino Spectrum
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FIG. 1 Grand Unified Neutrino Spectrum (GUNS) at Earth, integrated over directions and summed over flavors. Therefore,
flavor conversion between source and detector does not a↵ect this plot. Solid lines are for neutrinos, dashed or dotted lines for
antineutrinos, superimposed dashed and solid lines for sources of both ⌫ and ⌫. The fluxes from BBN, the Earth, and reactors
encompass only antineutrinos, the Sun emits only neutrinos, whereas all other components include both. The CNB is shown for
a minimal mass spectrum of m1 = 0, m2 = 8.6, and m3 = 50 meV, producing a blackbody spectrum plus two monochromatic
lines of nonrelativistic neutrinos with energies corresponding to m2 and m3. See Appendix D for an exact description of the
individual curves. Top panel: Neutrino flux � as a function of energy; line sources in units of cm�2 s�1. Bottom panel: Neutrino
energy flux E ⇥ � as a function of energy; line sources in units of eV cm�2 s�1.

Biggio et al., 2009; Ohlsson, 2013), spin-flavor oscillations
by large nonstandard magnetic dipole moments (Ra↵elt,
1990; Haft et al., 1994; Giunti and Studenikin, 2015), de-
cay and annihilation into majoron-like bosons (Schechter
and Valle, 1982; Gelmini and Valle, 1984; Beacom et al.,
2003; Beacom and Bell, 2002; Denton and Tamborra,
2018b; Funcke et al., 2020; Pakvasa et al., 2013; Pagliaroli
et al., 2015; Bustamante et al., 2017), for the CNB large
primordial asymmetries and other novel early-universe
phenomena (Pastor et al., 2009; Arteaga et al., 2017), or
entirely new sources such as dark-matter decay (Barger

et al., 2002; Halzen and Klein, 2010; Fan and Reece, 2013;
Feldstein et al., 2013; Agashe et al., 2014; Rott et al.,
2015; Kopp et al., 2015; Boucenna et al., 2015; Chianese
et al., 2016; Cohen et al., 2017; Chianese et al., 2019; Es-
maili and Serpico, 2013; Bhattacharya et al., 2014; Higaki
et al., 2014; Fong et al., 2015; Murase et al., 2015) and an-
nihilation in the Sun or Earth (Srednicki et al., 1987; Silk
et al., 1985; Ritz and Seckel, 1988; Kamionkowski, 1991;
Cirelli et al., 2005). We will usually not explore such
topics and rather stay in a minimal framework which of
course includes normal flavor conversion.

[Vitagliano, Tamborra & Raffelt Rev. Mod. Phys. 92 (2020)]
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Neutrino Flavour Oscillations

survival

probability

transition

probability

credit: Wikipedia

⌫e ⌫µ
⌫⌧

Neutrino oscillate between flavours in time/distance.
(mass state)

￼17

contact:


Koskinen



Neutrinos in Supernovae and Mergers
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Neutrino Interactions
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We still need to learn a lot about this process!

Understood phenomenon.

interactions� � �

Non-linear phenomenon!
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Stellar Nucleosynthesis
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Elements heavier than iron are born in supernovae and neutron-star mergers. 

Supernovae and neutron-star mergers

Ni Cu Zn Ag
Au

Hg Pb

+ ⌫e pe�n +
+p n+⌫̄e e+

Synthesis of new elements could not happen without neutrinos.

contact:

Tamborra
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Probe of Supernova Dynamics
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SASI modes

Neutrinos probe explosion mechanism of a supernova and its rotation.

Complementary information from detection of gravitational waves. 

[Tamborra et al., PRD 90, 123001 (2014) & PRD 98, 123001(2018)]

Predicted neutrino "lightcurves": 
contact:


Tamborra



Neutrinos In & From Cosmic Accelerators
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Multi-Messenger Astronomy
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Acceleration of charged nuclei (cosmic 
rays) - especially in the aftermath of 

cataclysmic events, sometimes visible in 
gravitational waves.

Secondary neutrinos and gamma-rays 
from pion decays:

cosmic ray

proton

nucleus

pions

(…)
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IceCube Observatory
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The IceCube Observatory

• Giga-ton Cherenkov

telescope at the South Pole
• Collaboration of about 300

people at 47 intl. institutions
• 60 digital optical modules

(DOMs) per string
• 78 IceCube strings

125 m apart on triangular grid
• 8 DeepCore strings

DOMs in particularly clear ice
• 81 IceTop stations

two tanks per station, two
DOMs per tank

• 7 year construction phase
(2004-2011)

• price tag: e0.25 per ton

Markus Ahlers (NBI) Deciphering Cosmic ⌫s with MM Astronomy May 22, 2018 slide 4

• Giga-ton Cherenkov 
telescope at the South Pole


• Collaboration of about 300 
scientists at 53 international 
institution


• 60 digital optical modules 
(DOMs) attached to strings


• 86 IceCube strings 
instrumenting 1 km3 of clear 
glacial ice


• 81 IceTop stations for cosmic 
ray shower detections


• price tag: ~2 DKK per ton
contacts:


Koskinen & Ahlers
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Status of Neutrino Astronomy
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Most energetic neutrino events (HESE 6yr (magenta) & nµ + nµ 8yr (red))

North

Galactic Plane
180o

-90o

-180o

Earth
absorption

South

No significant steady or transient emission from known Galactic and 
extragalactic high-energy sources (except for one candidate).
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Probe of Fundamental Physics
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[Ackermann, Ahlers, Anchordoqui, Bustamante et al., Bull. Am. Astron. Soc. 51 (2019)]
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Figure 1: Tests of fundamental physics accessible with neutrinos of different energies.

How do flavors mix at high energies? Experiments with neutrinos of up to TeV energies
have confirmed that the different neutrino flavors, ne, nµ , and nt , mix and oscillate into each other
as they propagate [33]. Figure 3 shows that, if high-energy cosmic neutrinos en route to Earth
oscillate as expected, the predicted allowed region of the ratios of each flavor to the total flux is
small, even after accounting for uncertainties in the parameters that drive the oscillations and in the
neutrino production process [57]. However, at these energies and over cosmological propagation
baselines [58], mixing is untested; BSM effects could affect oscillations, vastly expanding the
allowed region of flavor ratios and making them sensitive probes of BSM [57, 59–68].

What are the fundamental symmetries of Nature? Beyond the TeV scale, the symmetries of
the SM may break or new ones may appear. The effects of breaking lepton-number conservation,
or CPT and Lorentz invariance [69], cornerstones of the SM, are expected to grow with neutrino
energy and affect multiple neutrino observables [70–81]. Currently, the strongest constraints in
neutrinos come from high-energy atmospheric neutrinos [82]; cosmic neutrinos could provide un-
precedented sensitivity [62,71,73,76,78,83–90]. Further, detection of ZeV neutrinos, well beyond
astrophysical expectations, would probe Grand Unified Theories [43, 91–94].

Are neutrinos stable? Neutrinos are essentially stable in the SM [95–97], but BSM physics
could introduce new channels for the heavier neutrinos to decay into the lighter ones [98–100],
with shorter lifetimes. During propagation over cosmological baselines, neutrino decay could leave
imprints on the energy spectrum and flavor composition [65, 101–104]. The associated sensitivity
outperforms existing limits obtained using neutrinos with shorter baselines [103]. Comparable
sensitivities are expected for similar BSM models, like pseudo-Dirac neutrinos [65, 105, 106].

What is dark matter? Cosmic neutrinos can probe the nature of dark matter. Dark matter
may decay or self-annihilate into neutrinos [107–110], leaving imprints on the neutrino energy
spectrum, e.g., line-like features. Searches for these features have yielded strong constraints on
dark matter in the Milky Way [111–113] and nearby galaxies [114]. High-energy cosmic neutrinos

2

cosmic neutrinos

contacts:

Ahlers,


Bustamante,


Tamborra
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Probe of Fundamental Physics
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Unitarity Bounds of Astrophysical Neutrinos

Markus Ahlers,1, ⇤ Mauricio Bustamante,1, 2, † and Siqiao Mu3, ‡

1Niels Bohr International Academy & Discovery Centre, Niels Bohr Institute,
University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

2DARK, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
3California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA

The flavor composition of astrophysical neutrinos observed at neutrino telescopes is related to the
initial composition at their sources via oscillation-averaged flavor transitions. If the time evolution of
the neutrino flavor states is unitary, the probability of neutrinos changing flavor is solely determined
by the unitary mixing matrix that relates the neutrino flavor and propagation eigenstates. In this pa-
per we derive general bounds on the flavor composition of TeV–PeV astrophysical neutrinos based
on unitarity constraints. These bounds are useful for studying the flavor composition of high-energy
neutrinos, where energy-dependent non-standard flavor mixing can dominate over the standard mix-
ing observed in accelerator, reactor, and atmospheric neutrino oscillations.

PACS numbers: 14.60.Pq, 14.60.St, 95.55.Vj

Introduction.—The high-energy astrophysical neutri-
nos discovered by IceCube [1–7] are key to revealing
the unknown origin of high-energy cosmic rays and the
physical conditions in their sources [8]. They also pro-
vide a unique opportunity to study fundamental neu-
trino properties in an entirely new regime: their energy
and baseline far exceed those involved in reactor, accel-
erator, and atmospheric neutrino experiments. Effects of
non-standard neutrino physics — even if they are intrin-
sically tiny — can imprint themselves onto the features
of astrophysical neutrinos, including their energy spec-
trum, arrival directions, and flavor composition, i.e., the
proportion of neutrinos of each flavor.

At the sources, the flavor composition is determined
by the neutrino production process; after that, oscil-
lations modify the composition en route to Earth [11–
18]. Assuming standard oscillations, we predict the ob-
servable flavor composition. However, non-standard
neutrino oscillations can alter the composition drasti-
cally [19–25]. Non-standard effects can originate, e.g.,
from neutrino interactions with background matter [26–
28] and dark matter [29, 30] or from Standard Model
extensions that violate the weak equivalence principle,
Lorentz invariance, or CPT symmetry [31–37]. A key
property of these models is that the flavor transitions
between sources and Earth are entirely determined by a
new unitary mixing matrix that connects neutrino flavor
and propagation eigenstates.

We will discuss the regions in flavor space that can be
expected from this class of models. The unitarity of the
new mixing matrix allows us to compute the boundary
of the region that encloses all possible flavor composi-
tions at the Earth, in spite of not knowing the values of
the matrix elements. Previous work [20] derived a set
of unitarity bounds for specific choices of flavor com-
position at the sources. We extend this work by pro-
viding a refined and explicit formalism to derive unitar-
ity bounds that are easily applicable to arbitrary source

compositions.
Figure 1 shows our results for physically motivated

choices of source flavor composition. The ternary plot
shows the source and Earth flavor fractions, i.e., the rela-
tive contribution of neutrino flavors to the total neutrino
flux. Assuming that the accessible flavor space is con-
vex, i.e., that every intermediate flavor fraction between
any two accessible fractions is also accessible by a suit-
able unitary matrix, our unitarity bounds are maximally
constraining and completely characterize the accessible
flavor space.
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FIG. 1. Unitarity bounds of astrophysical neutrino flavors for
three source compositions indicated by filled symbols. The
corresponding open symbols indicate the expected composi-
tion at Earth under standard oscillations using the best-fit mix-
ing parameters for normal mass ordering [9]. We include the
best-fit flavor composition from IceCube [10] as a black star
and the 68% and 95% confidence levels as grey-shaded areas.

Probe of exotic neutrino mixing, e.g. in 
Lorentz-invariance violating extensions 

of the neutrino Standard Model.

Probe of neutrino-nucleon cross 
sections at very-high energies.

[Ahlers, Bustamante & Mu, Phys. Rev. D 98 (2018) 12, Ackermann et al., Bull. Am. Astron. Soc. 51 (2019)]



Particle Astrophysics Ahlers, Bustamante, Koskinen, Ruchayskiy & Tamborra

New particles. New probes
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How can we probe












Oleg Ruchayskiy

Hidden particles
Dark sectors

What is “feebly 
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Sterile neutrino dark matter

• Astrophysical searches: X-ray, 

Lyman-￼ 

• Production mechanisms: 

Leptogenesis, Einstein-Cartan 
gravity

α

Heavy Neutral Leptons  
(also known as right-handed neutrinos, heavy sterile neutrinos)


• Phenomenology of direct experimental searches: SHiP, ATLAS, SND

• Indirect searches and EFT

• Baryon asymmetry of the Universe: Leptogenesis

— The group is working on physics beyond the Standard Model with feebly 
interacting particles (feebly = weaker-than-neutrinos)

— Theoretical developments (what are they good for) and experimental searches  
(how to find them at CERN and beyond)
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Search in CERN (SHiP and SND)
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contact:


Oleg Ruchayskiy
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Summary
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Neutrinos in Particle Astrophysics and Cosmology:

• fundamental in most energetic phenomena in our Universe

• ideal messengers

• carry imprints of engine and population of extreme transients

• affect element formation in astrophysical sources

• their flavor conversions are crucial but yet to be fully grasped


M.Sc. projects in Particle Astrophysics can cover various aspects:


• impact on stellar evolution

• potential to probe astrophysical environments

• fundamental neutrino properties

• direct probe of the origin of cosmic rays

• observation in neutrino telescopes or experiments

contacts:

Ahlers,


Bustamante,


Tamborra
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Summary
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Dark particles. Dark sectors. Dark matter

• Particles beyond-the-Standard-model exist

• These particles can be interacting weaker than neutrinos

• They can be searches in lab and in space

• Their signals are always subtle, require ingenuity 


M.Sc. projects in Particle Astrophysics can cover various aspects:


• New probes of feebly interacting particles — there is still space 
for ideas!


• New methods of data analysis (large-scale AI tools , including 
popular nowadays LLMs)


• Lots of small cool projects to start you research contact:


Oleg Ruchayskiy
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Backup Slides
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Neutrino Selection I
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Neutrino Selection II
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Detection Methods II

8

• Outer layer of optical 
modules used as virtual 
veto region. 

• Atmospheric muons pass 
through veto from above. 

• Atmospheric neutrinos 
coincidence with 
atmospheric muons. 

• Cosmic neutrino events 
can start inside the 
fiducial volume. 

• High-Energy Starting 
Event (HESE) analysis

cosmic 

neutrino

cosmic 

neutrino

atmospheric

muon

atmospheric

neutrino

veto

condition

• Outer layer of optical 
modules used as virtual 
veto region.


• Atmospheric muons pass 
through veto from above.


• Atmospheric neutrinos 
coincidence with 
atmospheric muons.


• Cosmic neutrino events 
can start inside the 
fiducial volume.


• High-Energy Starting 
Event (HESE) analysis
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Multi-Messenger Interfaces
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The high intensity of the neutrino flux compared to that of ￼ -rays 
and cosmic rays offers many interesting multi-messenger interfaces.

γ
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Realtime Neutrino Alerts
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PoS(ICRC2017)982

Realtime neutrino alerts and follow-up in IceCube

IceCube 
Live

South

IceCube 
Live
North

Online Event 
Filtering 
System

Iridium

HESE Alert

EHE Alert AMON 
& 

GCN

South Pole, Antarctica

IceCube Data Center, Madison WI

Median alert latency: 33 seconds 

Followup 
Reconstructions

Figure 1: Overview of the realtime alert system. Events satisfying alert criteria are identified in the online
event filtering system that operates in realtime at the detector site in Antarctica. Event summaries and event
data are transferred to the north via the IceCube Live experiment control system [9] over an Iridium satellite
connection. Once in the north, alerts are formatted for distribution to GCN via the AMON network. Ad-
ditionally, full event information for each alert is used to trigger automated followup event reconstructions.
Median latency for alerts, comparing the time of the neutrino event to the alert being issued, is 33 seconds.

Track events are classified online by a "signal-trackness" parameter [14] that uses the likeli-
hood values returned from track and shower reconstructions to assign a numerical measure of how
consistent each HESE event is with being a track. Events with a signal-trackness value �0.1 are
classified as tracks.

Based on measured background event rates, and expectations based on the measured HESE
neutrino flux [6], 4.8 alerts are expected per year. Of these, 1.1 are expected to be astrophysical,
while 3.7 are from atmospheric background events, primarily rare cosmic ray muon events. Given
their track nature these events have good angular uncertainty, as shown in Figure 2, based on
simulated HESE event samples. Here, the median angular difference between the alert direction
and true direction is 0.55� (1.89� for 90% inclusion) for tracks with a reconstructed track length
>200 m.

2.2 EHE Track Alerts

The extremely-high-energy (EHE) neutrino alert stream is based on an offline search for cos-
mogenic neutrinos that resulted in the serendipitous discovery of the first observed PeV-scale neu-
trinos [15]. The standard EHE analysis searches for neutrinos with energies of ⇠ 10 PeV to 1 EeV,
where the expected event rate in the most optimistic case is ⇠1 event per year [13]. To move this
analysis into the realtime framework the event selection was modified in order to increase the sen-
sitivity to astrophysical neutrinos, specifically neutrino energies in the 500 TeV to 10 PeV range,
which are track events with good angular resolution.

The EHE alert selection requires a minimum deposited charge of ⇠4000 photoelectrons (NPE)
detected in IceCube DOMs, as well as at least 300 DOMs registering a signal. A cut on deposited
charge that strengthens with zenith angle for well reconstructed tracks is then applied [14] (see
Figure 3) to reject events likely to be from atmospheric origins.

A "signalness" value is calculated for each track event, which reflects how likely each event is
to be of astrophysical origin relative to the total background rate. This value is calculated from the
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Figure 2. Joint, multi-messenger detection of GW170817 and GRB170817A. Top: the summed GBM lightcurve for sodium iodide (NaI) detectors 1, 2, and 5 for
GRB170817A between 10 and 50 keV, matching the 100 ms time bins of the SPI-ACS data. The background estimate from Goldstein et al. (2016) is overlaid in red.
Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
Livingston data. All times here are referenced to the GW170817 trigger time T0
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Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
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Binary neutron star merger GW170817 observed in gravitational waves and
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