Theoretical High Energy Physics

with emphasis on (my personal perspective on) the particle/string duality

Charlotte Fløe Kristjansen

NBIA

NBIA MSc Day 2023

Particle/string duality=Gauge/gravity duality Common framework for particles and strings

Complexity, particle theory

Complexity, string theory

Particles

Motion described by world line:

Quantization :

Discrete set of states

Particles = Excitations of field

One-dimensional

Motion described by world sheet

Quantization \implies Discrete set of states Strings= world sheets with excitations

Spin Chains

One-dimensional lattice:

Discrete set of states: Spin up or spin down.

Vacuum state: All spins pointing down

Flipped spins = Excitations of the vacuum

Spin Chains as the connecting link between particles and strings

Excitations on spin chain (16 different ones)

Interactions between excitations determined by symmetries alone

Spin chain exactly solvable, dvs. particle and string theory exactly solvable

Fundamental ideas

- Number of parameters reduced to one, λ
 (describes the strength of interactions between excitations)
- Extra symmetries introduced (super symmetry, conformal symmetry)
- String theory defined on special 10d space, which has our 4D Minkowski space as boundary: holography $(AdS_5 \times S^5)$

Summary

Breaking the symmetries, keeping the duality

String theory: Introducing higher dimensional brane

	t	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	
D3	Х	×	×	×							
D5	Х	×	×		×		×	×			
D7	X	Х	X		X		Х	Х	Х	Х	

Field theory: Introducing domain wall separating different vacua

Spin chain: Introducing boundary state

Connections to condensed matter physics

The defect can model a sheet of graphene

The boundary state can serve as initial state for a quantum quench

Matrix product states are used to compute correlation functions

Other ways to break the symmetries

- Non-relativistic/Carroll gravity from large/small speed of light expansions of GR & applications to:
 - real-world GR (BH horizons, mergers, ..)
 - cosmology
 - non-relativistic (quantum) gravity
 - holography
- Non-relativistic strings and limits of AdS/CFT correspondence & connections with spin Matrix theory non-relativistic corners of M-theory/non-perturbative dualities
- Hydrodynamics of non-boost invariant (quantum critical) systems and fluid/gravity correspondence
- Newton-Cartan submanifolds and applications to soft CMT
- blackfolds and the construction of SUSY-breaking (anti-brane) solutions in string theory

Recent MSc thesis with Niels Obers (since 2016)

- Dennis Hansen, On non-relativistic field theory and geometry (2016)
- Emil Have, On charged Lifshitz holography (2017)
- Marieke van Beest, Newton-Cartan Gravity and 3D Chern-Simons Theory (2018)
- Bjarke Nielsen, Non-relativistic submanifolds and fluid dynamics (2018)
- Matthew Steinberg, MERA tensor networks, quantum error correction, & AdS/CFT (2018)
- Jörgen Sandøe Musaeus, 2+1 Dimensional non-relativistic gravity (2020)
- Yibo Zhong, Bulk reconstruction (2021)
- Frederik Holdt-Sørensen, Aspects of conformal field theories and gravity in large dimensions (2021)
- Roberto Forbicia León, On non-Lorentzian geometry and the weak field limit of non-relativistic gravity (2022)

Recommended study track

High Energy Theory and Cosmology

	Block 1	Block 2	Block 3	Block 4
Year 1	<u>Advanced</u> <u>Quantum</u> <u>Mechanics</u>	<u>General</u> <u>Relativity</u> and <u>Cosmology</u>	<u>Quantum</u> Field Theory 1	Fundaments of High-Energy Astrophysics and Particle Astrophysics
	<u>Elementary</u> <u>Particle</u> <u>Physics</u>	Particle Physics and the Early Universe	<u>Modern</u> <u>Methods</u> <u>for Particle</u> <u>Scattering</u>	Choose one of: Introduction to String Theory* Introduction to Gauge/Gravity Duality** Advanced Topics in QFT & Gravity***

Year -1: Mat F3 (Group theory for physicists :-)

Visit us for further info

