Applications of Generalized Symmetries to Quantum Matter

Interests: Generalized symmetries, anomalies and topological aspects of quantum field theories and quantum lattice models.

Goal: Develop new methods based on these concepts to study phase diagrams of correlated quantum matter.

Global Symmetry:

Useful as:

i) As an organising principle for states and operators

ii) Constrains low-energy physics/dynamics

Standard Model

Crystallography

Landau Classification

Global Symmetry old and new

Conventional picture

• Symmetry operators <u>commute</u> with the Hamiltonian.

• Symmetry operators act on local operators by <u>conjugation</u>.

• Symmetry operators satisfy group like fusion rules.

Modern picture

• Symmetry operators are <u>topological</u>.

• Symmetry operators act on local operators by linking.

• Symmetry operators need NOT satisfy group like fusion rules.

Generalized symmetries

Mathematical description:

Higher Fusion Categories

realizations of theories with generalized theories e.g., Lattice gauge theories, QCD, Topological

Why? Can extend Landau's paradigm, constrain strongly coupled theories, new insights computation.

Holographic Symmetry

Why useful? Organizes spectrum of symmetry charges, quantum dualities, provides a full classification of phases of symmetric matter.

Many many unexplored interested puzzles!