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Feynman Integrals

QCD Gravity

Boil em,

Theory independent building blocks capturing most loop-level information mash em,
stick em in an amplitude

Integrals associated to geometries
Determines suitable function space

Sphere Elliptic curve

What is there
l l« beyond elliptics?

MPLs Elliptic Integrals, modular forms, EMPLs
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Feynman Integral Evaluation

ODOOOO

A How [o

List all integrals appearing in your problem

Use identities (integration-by-parts, symmetries, etc.)
to obtain basis integrals / (“Master Integrals”)

Write down a differential equation dI = AT

Solve differential equation (??7?)

Obtain expressions for Laurent series in € of /



Trick: Choose Master Integrals such that

d.[ — 814] Henn *13]

Find basis and variables, such that
» A independent of €

» A consisting of functions we “understand well”
W - -
Analytic understanding

k_/ and/or

fast numerical evaluation
Given boundary value I,

Can then trivially evaluated at any orderine: I = [Pexp (e / A) Iy

Geometry associated to integral determines space of forms in A
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Fantastic Geometries

and where to find them

How do we identify geometry of integrals?

Graph Polynomial

Uv—U+1)D/2

IN/Hdozioz;/"'_ Y

U/F define projective variety

Extracting geometry is hard!

Maximal Cuts

[TdeP
MaxCut(I) ~ 0 D: /{D; — &§(D;)}

Homogeneous solution to
differential equation of full integral

Skeletonized version of integral
Much simpler to extract geometry



How do we generalize from the elliptic
integrals?

Elliptic Feynman integrals are phenomenological state of the art
What else is there?

Elliptic Curve @

Dimension Genus
/ 1 1 \
Higher dimensional Curves of
varieties higher genus

e.g. Calabi—Yaus e.g. Hyperelliptic curves




Calabi—Yaus




Calabi—Yaus in Feynman Integrals

Compute maximal cut

and takes as many residues . i i .
Y Hypersurface in weighted projective space

as possible
[Bourjaily, McLeod, Vergu, Volk, von Hippel, Wilhelm, ‘20]
. . , , 1,1,....1,(n+1
daq ...dao, l:ar:...:an:yl € WP (n+1)
MaxCut I ~
\/P(Oél,...,()én)

?J?:P(al,...,&n) with deg P =2(n + 1)

_ Codimension 1 = Dimension n
Calabi—Yau n-fold

MaxCut([/) is a so-called period of the Calabi—Yau



Calabi-Yaus: “A (bounded) bestiary”

[Bourjaily, McLeod, von Hippel, Wilhelm, ’19]
[Duhr, Klemm, Loebbert, Nega, Porkert, Tancredi, 22, 23]

Simplest Example:
Banana Integrals

inD =2 — 2¢




Bananas: A Calabi-Yau Prototype

Calabi-Yau...

/\

— «— (O-fold
N
/\
¢ «— 1-fold = elliptic curve
\/ “SI:mrise”
/\

—«__—»— 2-fold = K3 surface

(1

3-fold

ﬁ—loop banana program [Bonisch, Duhr, Klemm, Nega, Safari; Kreimer; Forum, von Hippel]

Simplification: Equal-mass — single scale

Kinematic variable
2

_ b __m

T 7T R
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“Trivial” Calabi-Yaus
Essentially elliptic

Three-loop Banana

"

2207.12893

F—
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“Non-trivial”’ Calabi-Yaus

Non-elliptic

(=Four)-loop Banana

N
—

2211.04292
2212.08908



The Three-Loop Banana Integral

Simplest example of Feynman integral beyond elliptic:

Calabi-Yau 2-fold

Equal-mass case: closely connected to sunrise integral

Extensively studied in the past:

Leading term in € [Bloch, Kerr, Vanhove, 14’] \/
e-factorized form [Primo, Tancredi,17’]

Master integrals in d = 2 in terms of eMPLs I [Broedel, Duhr, Dulat, Marzucca, Penante, 197]

DEQ with meromorphic modular forms [Broedel, Duhr, Matthes, 21°] SingularitieS'
é—loop banana program [Bonisch, Duhr, Klemm, Nega, Safari; Kreimer; Forum, von Hippel] 5
pP

X = ﬁ = 0,4,16,00
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Picard-Fuchs Differential Operator

Annihilates MaxCut(/)(periods of Calabi-Yau)

w Defines geometry
3-loop banana in D = 2:

C(O)_d?’ 3 3 l 3 1 d® 72— 68z+64 d 1
S dxd |z 2(x—4)  2(x—16)| dx?2 22 (x—4)(x —16)dzr 22 (x — 16)

with solutions Léo) w; = 0 where w; = MaxCut(I1111)]; on three independent contours ;

£\ is a symmetric square

[Verrill, 96’; Joyce, 72|

There exists an operator

d? 1 1 1 1 d (x — 8) Sunrise in disguise
£y = — +|=H : : «——
: dx? r 2(x—4) 2(x—16)|dr 4dx(x—4)(x— 16)

with solutions %1, ¥, Céo) Y; = 0 such that

Wi € <¢%7 ¢1¢2> ¢§>
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e=-Factorization: Sunrise

2
Make the ansatz Iy = €% 1110,
27

Iy = €¢1111, T:@ e ool
. dl P — "
I35 = Io + F3ol5,
e dr

0 O O
d] = ¢ 0 77 A organised by modular weight
S

v A independent of €

v A consists of modular forms
N ——— ————

“well understood”

nk : Modular forms of I, (6) of weight k, independent of €
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e-Factorization: Three-loop Ansatz

3
Make the ansatz Iy = €”I1110,

1 | |
3 No assumptions for w and 7 required
Iy =¢e”—1I1111,

W
1 d

I35 = Io + F3515,
edr

1 d
Iy = I3 4 Fyolo + Fysls.

e dr

dl = AJ

Requiring A = ¢4 — constraints on w, J, F5,, Fy5, Fy;

@
dr
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Eliminate Non-c-Factorized Pieces
f\ Already e-factorized

L Ay . contains term £ *** through ¢

Five variables, six constraints
W, J, F3p, Fyp, Fys

— One non-trivial constraint!

wn & Periods of elliptic curve
¥

l//fllll

Satisfied for ® = (xy™)?
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d/

0

o O O

(272)e i

fe

;'w
Q

_fZ,a T f2,b

0

fa

1
—Jf2.0 +2f25

,b

Alphabet: A = {1, f2. 4, fo.bs fa.ay fa.bs f6]-

Function space of Alphabet

Meromorphic modular forms =+ Special function F,

Obtained expressions for all masters up to ¢

Numerics via g-expansion

|

- O(e?)

1(1919 4,61; T)) B
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0
0
1

_f2,a _ f2,b

6

K

Constraints allow
symmetry

F2:](1796;’7') g6 —

TN

Iterated integral of meromorphic
modular form of weight 6

z(z —8) (z + 8)°

1

864 (4 — )2 (16 — x)2

(

s

:




“Trivial” Calabi-Yau Summary

e-factorized form: Ansatz, then solve constraints algorithmically
Symmetric square: Three-loop banana integral related to elliptic curve

Function space: Meromorphic modular forms, plus iterated integrals thereof (£)

Expectation: This generalizes beyond the banana!

Single scale + “trivial” Calabi-Yau e-factorised DEQ from Ansatz

2-fold Calabi-Yau integral + =3  je. symmetric power  =—> Function space
degree 3 Picard-Fuchs operator of elliptic curve essentially elliptic
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“Trivial” Calabi-Yaus
Essentially elliptic

Three-loop Banana

F—

"

2207.12893
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“Non-trivial”’ Calabi-Yaus

Non-elliptic

(=Four)-loop Banana

N
—

2211.04292
2212.08908




The Four-Loop Banana Integral

First banana integral with “non-trivial” Calabi-Yau:

Not related to elliptic curves /\
N

Integral already studied in the past "~ __—
E—Ioop banana program [Bonisch, Duhr, Klemm, Nega, Safari; Kreimer; Forum, von Hippel]

Algebraic Variety from graph polynomial Singul:zrities:
Hypersurface in CP* with y=—"=0,-1-

1 1 1 1 1
1/y=(a1+a2+a3+a4+a5)<—+—+—+ | )
04 0%) 03 0y U5

Calabi-Yau very well known

Studied in [Hulek, Verrill, 05’; ...]
Known as AESZ34 [Almkvist, van Enckevort, van Straten, Zudilin]
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e-Factorization: Four-loop Ansatz

4
e 111110,

1
A
Iy =" —111111,
B

1 d

e dr
1 d

Guess the pattern? I,

o
|

12 + F32127

=~
||
N
_|_
-
\)
)
_|_
-
Qo
N

oy
|

Iy + F5olo + Fr3l3 + Fryly.
edr

dl = €Al leads to inconsistent constraints!
— No solution!
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e-Factorization: Four-loop Ansatz (fixed)

Modify ansatz!

I = ¢* 11110,
1
L ="~
W
1 d
I3 = I + F321s,
edr

1(11d
Ji Io+ Fuoly + Fyal
4 5d73+ 4249 + L4313

1 d
Iy + F50lo + F5313 + F54ly4.
edr

oy
|

¢-loop Banana Integrals define
special Calabi—Yau manifolds

Picard—-Fuchs operators are
Calabi-Yau operators

[Almkvist, van Enckevort, van Straten, Zudilin, 05’]
[M. Bogner, 13’]

Start appearing at 3-fold

dl = €Al leads to consistent constraints!

No prior knowledge of K required!

Fixed by constraints (up to rescaling)
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What is the function space of “non-trivial” Calabi-Yaus to solve constraints?

Currently unknown

But for fast numerics, imitate elliptics:

g-expansion

Four-Loop solutions

. )
Expansion point q(y) = exp (2zmiw,/w;) | y— 8y + 92y - 1288y* +20398y° + 6(y%)
D= @ 2 3 4 _ 5 6 : :

y = — mz/pz = (0 (MUM-point) I q+3¢"+q"+23¢" = 101¢" + 0(g") | Predictable from just
< K, = d?/dt*(w;/w;) | 1 — g+ 17¢% — 253¢3 + 3345¢* — 437514° + O(¢°) Picard—Fuchs operator

Frobenius basis: J g + 1642 + 108¢° + 672¢" + 25704° + 6(¢°)

W, W2, W3, W ’
< Fs, 3y + 8q — 32¢% + 512¢° — 5872g* + 70008¢° + O(¢®) )

Expansion coordinate:

. 2 3 4 5
g = exp (27727-), T = Wy /Wy Fy) cipt8q — 240g* + 4816g° — 904484* + 1444008 Need to solve

Canonical variables
for Calabi-Yau operators

Generalization of

T (ratio of periods)

d (nome)

from elliptic case £ = 2

Remaining freedom c3,, ¢4, €tc.
— can impose symmetry on A

+c3(—9g + 1764 — 29564 + 445684* — 6111064°)
+c2(q — 16g% + 220g° — 26004* + 300184°)
+0(q°)

constraints

Fast numerical evaluation
(Within convergence radius)
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Five-, Six-, All-Loop Ansatz

¢
Iy =¢11. 10,

1
L=e"~1 1,
W
1 d
I3 = ——1Is + F3215,
e dr
I —1(?(1] + Fyolo + Fysl
4_5K1d73 4212 4313
11 11d
Is = — Iy + Frsolo + F53l3 + b4l
EKQdT
(—2
111 1d
Iy 1 = — Iy Fo_ 1.1,
/—1 EKQdTeQJrZZ:; —1,
—1 =
111 1d
I) = — Iy Fy . I
¢ SKldTe 1+Z /)
\— 1=2
¢
1 d
log1 = gd—TIz + ZFEH,@L@

1=2

-200000
-400000 -

-600000 -

Checked up to seven loops
Ansatz with K; being Y-invariants leads to consistent constraints

Checked up to six loops
Analytic expressions for Masters in terms of iterated integrals

I, = [I(l,Kl, K5, K,1,A;1) + boundary] e’ + O(®) etc.

Numeric evaluation using g-expansion: agrees with SecDec

] ] 1.5x107 -

200000+ [

1.0x107 |-

~—

A . 5.0x10°
RS E L

-
-
-
-
_-A
-
-
-
-

-5.0x10°
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“Non-Trivial” Calabi-Yau Summary

e-factorized form: Ansatz with information from Calabi—Yau operators
— Solve constraints algorithmically

Function space: currently unknown

Numerics: can obtain fast converging g-expansion

Expectation: Generalizes to other Calabi-Yau integrals

Single scale +
n-fold Calabi-Yau integral +
degree (n+1) Picard—Fuchs operator

Calabi—-Yau operator 5 e-factorised DEQ from Ansatz
3 “non-trivial” Calabi-Yau Solve via series expansion
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Conclusions

Banana integrals: Simplest example of Calabi-Yau integrals

Simplification: Equal-mass = single scale

Single scale integral //_\\

n-fold Calabi-Yau, —e . o——

- \/
degree (n+1) Picard-Fuchs operator \_/

Ansatzing allows to find e-factorised form algorithmically

Use information from theory of Calabi-Yau operators

Calabi-Yau 2-fold Calabi-Yau (>3)-fold
Picard-Fuchs is symmetric square Not relatable to elliptics
of elliptic curve Function space unknown

Modular forms g-expansion
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Conclusions

O Beyond polylogs, control of geometry is crucial for evaluation of Feynman Integrals

O Integrals beyond elliptic ones are relevant to collider phenomenology today!

O Identification of “simplest” geometry not trivial

o There exists a wealth of mathematical knowledge for geometries associated
that can be applied to Feynman integrals (algebraic curves studied since 19th century)



