Joint Theory Colloquium

Global symmetries, dualities and universal properties of quantum matter

Niels Bohr Institute, University of Copenhagen

21st November 2023

Apoorv Tiwari

Goal: Non-perturbative methods to organize/predict universal properties of interacting quantum matter.

Symmetry & Topology Symmetry \simeq Topology

In collaboration with

Lakshya Bhardwaj, Oxford

Oxford

SciPost Phys. Core 6, 066 (2023) arXiv:2307.01266

Faroogh Moosavian, Oxford

arXiv:2301.01259

Sakura Schäfer Nameki, Lea Bottini, Oxford

Clement Delcamp, IHES

Heidar Moradi Kent

Ömer Aksoy MIT

arXiv:2308.00743

Motivation and Background

Physical Universe

Outer space

Fundamental particles

Material (tunable) universe

High-Temperature superconductor

Universal properties

Universality

Graphene

Artificial (programmable) universe

Cold atom Experiments

Computers

Mona Lisa, Leonardo Da Vinci, ~ 1505

Many-Body Quantum System

Emergence and Universality

Seated Woman, Pablo Picasso, 1927

Universal properties

Emergence and Universality

UV/short-distance

Microscopic lattice model

Effective descriptions

e.g. spin models, Hubbard model, etc.

e.g. Effective field theory, gauge systems, dimer models, etc.

Tensor decomposable Hilbert space

Possibly not Tensor decomposable Hilbert space

Renormalization group fixed points

Topological quantum field theory (TQFT)

Describe universal properties of ground states/low-lying states.

 \geq

Classification of (***)-gapped phases of matter

Conformal field theory (CFT)

Classification of

(***)**-TOFTs**

Hard problem:

Classify and characterise all phases & phase transitions

Easier problem:

Classify and characterise symmetric phases & phase transitions

Global symmetries are very useful

Organisation of matter

[Representation Theory]

Eight-fold way

Classification of phases

[Spontaneous Symmetry breaking]

Landau paradigm

Classification of symmetric phases.

$$G$$
disordered $\langle \Phi \rangle = 0$

Beyond-Landau Paradigm: I. Deconfined quantum criticality:

 $H_1 \not\subset H_2, H_2 \not\subset H_1$

Landau Paradigm: Phases distinguished by symmetry breaking patterns.

Examples: Magnets, superconductors,...

Classification of symmetric phases. Beyond-Landau Paradigm:

II. Symmetry protected topological phases

III. Topologically ordered phases

- Examples: Topological Insulators and superconductors.
- Distinguished by topological response.
- TQFT based classification.

- Examples: Toric code/deconfined finite gauge theory.
- Distinguished by topological correlation functions.
- TQFT based classification.

Generalized Symmetry : A new perspective unifying Landau and beyond physics (Generalized Landau Paradigm)

Global symmetry: a new perspective

Central insight: Symmetry operators are topological (inside correlation functions)!

Conventional global symmetry is defined via a collection of operators $\{U_g\}$.

Properties of symmetry operators

1. Act on all of space

2. Commute with the Hamiltonian $[U_g, H] = 0$

[Gaiotto-Kapustin-Seiberg-Willett '14]

Generalized symmetries

Properties of symmetry operators

4. Act on operators via conjugation

$$\mathbf{U}_{\mathbf{g}}: \mathcal{O} \longrightarrow \mathbf{U}_{\mathbf{g}} \mathcal{O} \mathbf{U}_{\mathbf{g}}^{-1}$$

Examples: Global symmetry via topological operators

- 1. U(1) particle number conservation :
 - Symmetry operator :

$$U_{g}[\Sigma] = \exp\{ig \mathcal{Q}_{\Sigma}\}, \qquad \mathcal{Q}_{\Sigma} = \int_{\Sigma} \star J, \quad d \star J = 0$$

Current conservation implies topological invariance.

Action via linking

$$\mathcal{Q}_{\Sigma} = \mathcal{Q}_{\Sigma'} + \int_{Y} \frac{\mathbf{d} \star \mathbf{J}}{\mathbf{J}_{Y}}$$

- 2. Z₂ global symmetry :
 - Invariance under background gauge transformations implies topological invariance of symmetry operator

Background gauge field

• gauge transformation

Generalized global symmetries

Properties of symmetry operators	Conventional symmetries	Higher group symmetries	Non-invertible
co-dimension	1	≤ q	General
Fusion rules	Group like	~ Group like	Non-group like

Mathematical Language:

Higher- fusion categories:

- A framework to organise the collection of topological defects/operators of all (co-)dimensions along with their fusions +
 - Symmetry structure of (d+1)-dimensional quantum system

d-Fusion category \simeq

• Incorporating generalized symmetries and their symmetry breaking.

- transitions.

• Generalized charges of generalized symmetries are Order Parameters.

• Upshot: Can be used to unify several beyond-Landau phases and phase

• **Example:** Topological order = Generalized symmetry breaking phase.

Space of symmetric quantum systems and Gauging-related dualities

Space of Z₂ symmetric quantum systems

space.

• Global Z2 symmetry generated by X_j.

• Space of symmetric operators is a bond algebra $\mathscr{B}_{\mathbb{Z}_2}(\Lambda) = \langle X_j, Z_j Z_{j'} \rangle$.

• Consider a lattice Λ , with each vertex equipped with 2-dimensional local Hilbert

Quantum dualities

• Non-trivial map between two quantum systems

• Imposes many constraints

• Relate strongly and weakly coupled systems.

Duality and gauging

Bond algebra isomorphisms are realised as dualities

• Transverse Field Ising model :

 \simeq

$$\mathcal{H} = -\sum_{j} [X_{j} + \lambda Z_{j} Z_{j+1}]$$
Ising Category symmetric phases can b

All Kramers Wannier self dual deformations have Ising Fusion Category symmetry

 $1 \oplus \mathscr{U}$

 $\mathcal{U} \times \mathcal{U} = 1,$ $\mathcal{U} \times \mathbf{D} = \mathbf{D},$ +1] + $D \times D = 1 + \mathcal{U}$ e classified.

A 2+1 dimensional example.

- Mapping of phases:
 - Symmetric (trivially disordered)
 - Symmetry protected topological
 - Symmetry broken

- Topological (deconfined) Z2 gauge theory
- Topological (twisted) Z2 gauge theory
- Symmetric/ confined Z2 gauge theory

- In 1+1 dimensions :
- In 2+1 dimensions :
 - Gauging normal subgroup \implies Higher groups
 - Gauging central extensions \implies Mixed 't Hooft anomalies
 - Gauging non-normal subgroups \implies Non-invertible symmetries

• In 3+1 dimensions : Many more rich examples

Generalizations

• Gauging non-trivial central extensions \implies Mixed 't Hooft anomalies.

• Gauging a non-Abelian group $G \implies$ Non-invertible symmetry Rep(G).

Generalizations

Message:

Gauging is a rich source of dualities and therefore a systematic exploration of phase diagrams.

Bhardwaj-Bottini-Nameki-Tiwari (Scipost '22, Scipost '23 I,II),

 $\{ \bigcirc, \bigcirc, \bigcirc, \bigcirc \} = \text{Different symmetries}$

Topological Holography

Topological Holography

Main idea :

D dimensions

Convenient and powerful :

- (i) Classification of phases,
- (ii) Properties of excitations,
- (iii) Phase transitions,
- (iv) Universal dualities.

Holographic "bulk" only knows about universal physics!

Holographic dictionary

D-dimensional quantum system with symmetry category 8

Dictionary when G is a finite abelian group :

quantum sys	tem (D-dim)	
-------------	-------------	--

G 0-form symmetry

Symmetry operators

Charged operators

Gapped phases

Dualities

't Hooft anomaly

(D+1) - dimensional topological order $Z(\mathcal{C})$

Topological order (D+1)

G-topological gauge theory

Magnetic (D-1) surface operators

Electric line operators

Gapped boundaries

0-form symmetries

Dijkgraaf-Witten Topological action

[Moradi-Moosavian-Tiwari, Scipost 2023]

An example: 1+1d, finite group symmetry

- Quantum system: 1+1 dimensional with G (finite Abelian) symmetry.
- Holographic bulk: G topological gauge theory.

[Fuchs-Priel-Schweigert-Valentino], [Barkeshli-

- Quantum system: 1+1 dimensional with Z2 symmetry.
- Holographic bulk: Z2 topological gauge theory/toric code.

• Line operators $\{1, e, m, f = e \times m\}$

• 0-form symmetry: e-m duality

G=Z2

Effective spin chains from holographic bulk

• Define bulk on a spatial cylinder.

• Algebra of line operators

• Boundary Hilbert space: decomposition into super-selection sectors: $\mathscr{H}^{\partial} = \bigoplus \mathscr{H}^{\partial}_{d'}$ labelled by Γ_d eigenvalues. $d'=(g',\alpha')$

symmetry twisted sectors

symmetry eigenspaces

Bulk line operators to Boundary operators

$$\prod_{j} S_{g}(j) \longrightarrow \mathscr{U}_{g} = \bigotimes_{i} \mathscr{O}_{g,j}$$

Bulk line operators to Boundary operators

• Symmetry twist operator

$$\mathbf{G} = \prod_{j} Z_{j}^{\alpha} Z_{j+1}^{\alpha},$$

$$\longrightarrow \mathsf{T}_{\alpha} = \bigotimes_{j} \mathscr{O}_{\alpha,j} \ \mathscr{O}_{\alpha,j+1}^{\dagger}$$

$$\alpha = 0,1$$

Z2 x Z2 symmetric quantum systems

• 2+1d Topological gauge theory:

 \rightarrow 1-form and 0-form symmetries

- $\mathscr{A}[G] = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \mathscr{A} | \mathcal{A}[G] \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 = \mathbb{Z$
- $\mathscr{D}[G] = (S_3 \times S_3) \rtimes \overline{A}$

→ 6 Gapped boundaries/6 gapped phases.

$$\langle e_L, e_R, m_L, m_R \rangle$$

 \mathbb{Z}_2

Orbifold CFT between SPT_0 and SPT_1 (using k_1 duality):

→ ED vs conformal spectrum

 $e_{L} \longrightarrow e_{L}m_{R}$

 $e_L e_R \longrightarrow f_L f_R$

Moradi-Moosavian-Tiwari (Scipost 23),

Tri-critical point with emergent S₃

Higher Category of Symmetric Gapped phases

Fusion 1-category symmetries

- Describe finite symmetries of 1+1d systems. Topological - Objects : lines L_3 L_4 🛉 m 🍦 n 🛽 **- Fusion :** \cong • $L_1 \otimes L_2$ L_1 L_1 L_2 L_2 $\mathsf{L}_1 \otimes (\mathsf{L}_2 \otimes \mathsf{L}_3)$ $(\mathsf{L}_1 \otimes \mathsf{L}_2) \otimes \mathsf{L}_3$

- Associators :

 \cong

+ coherence relations

[Etingof-Gelaki-Niksych-Ostrik]

• Vec(G) :

Conventional G symmetry

Rep(G) symmetry

G-symmetric (topological) quantum mechanics

Fusion 2-categories: Symmetries in 2+1d

- Fusions and compositions:

- Many compatibility conditions [Douglas-Reutter '18]

[Douglas Reutter], [Cui], [Fuchs-Valentino-Schweigert '02], [Gaiotto-Johnson Freyd], [Kong], [Bhardwaj-Bottini-Nameki-Tiwari]

I. **Group 2-categories** (2VecG):

Conventional G symmetry

II. **Group representation 2-categories** (2Rep(G)):

2-category of 2d TQFTs

2d TQFT with n vacua/ground states

1-category of lines

II. **Group representation 2-categories** (2Rep(G)):

 $H \subset G$: Spontaneous symmetry breaking $G \rightarrow H$ $\nu \in H^2(H, U(1))$: H symmetry protected topological phase

PHYSICS INTERPRETATION

Objects: Gapped phases of matter with G symmetry.

1-Morphisms: Gapped boundaries between gapped phases.

2-Morphisms: Gapped junctions.

[Ostrik], [Chen-Gu-Liu-Wen]

Group representation 3-categories (3Rep(G)):

3 category of monoidal functors from:

 $3C_{\rm G}$

(Single object, 1-endomorphisms $\simeq 2 \operatorname{Vec}(G)$)

Physically corresponds to possible ways in which non-anomalous topological orders can be made G-symmetric.

SPT and SSB phases are recovered by making the trivial topological order G-symmetric.

3Rep(G) = 3 category of invertible and non-invertible G-symmetric gapped phases of matter

(Category of 2+1d TQFTs with gappable boundaries ~ (centers of) Fusion 1-categories)

Theta defects in (2+1) dimensions

In d+1 dimensions, when gauging a subgroup $H \subset G$

Main messages

I. Any (d+1) dimensional quantum system obtainable by gauging an invertible symmetry Scontains a universal d-Fusion category of symmetry defects/operators

[Bhardwaj-Bottini-Nameki-Tiwari SciPost Phys. 15, 122 (2023), SciPost Phys. 15, 160 (2023)]

All phases, junctions and interfaces are gapped and *S*-symmetric

These are Theta Defects

Main messages

II. Additionally there are non-universal Twisted Theta Defects, obtained by stacking the pre-gauged system with lower dimensional S-symmetric phases and gauging

pre-gauged system

Classification of phases with generalized symmetries

Mechanisms for unconventional transitions +**Generalized Landau paradigm**

Consequences for dynamics/ excited states

Directions

Incorporating :

- Crystalline symmetries
- Fermionic symmetries
- Time reversal
- Continuous symmetries

Topological defects for topological quantum computation

