ML in the dating of ice cores

A GRU Method for Automated Annual Layer Identification

Rasmus Arentoft Nielsen

Supervisors: Sune O. Rasmussen Troels C. Petersen

UNIVERSITY OF COPENHAGEN

Outline

Outline

- A broad introduction Motivation, data and a bit of glaciology
- The model GRU model structure and peak detection
- Results Examples and overall performance
- Discussion What are the limitations of the model?
- Conclusions

Introduction

4/16

Outline Introduction

Model & Setup

Results

Discussion

Conclusion

GRU Model

Outline

GRU - Looking Inside

GRU - Looking Inside

$$\mathbf{h}_{\langle d \rangle} = (1 - z_d) \odot \hat{h}_d + z_d \odot \mathbf{h}_{\langle d-1 \rangle}$$

$$\hat{h}_d = \tanh(W_{\hat{h}} x_d + U_{\hat{h}} (r_d \odot h_{d-1}) + b_{\hat{h}})$$

$$z_d = \sigma(W_z x_d + U_z h_{d-1} + b_z)$$

$$r_d = \sigma(W_r x_d + U_r h_{d-1} + b_r)$$

Outline

GRU Model - Setup

• UNIVERSITY OF COPENHAGEN

Model type	Bidirectional GRU Encoder-Decoder
Encoder	32 neurons, return_sequences = False
Decoder	32 neurons, return_sequences = True
Optimizer	Adam, loss = 'binary_crossentropy' (BCE)
Window size	1-2 years (35-140 samples for GRIP/NGRIP) in GICC05 timescale
Learning rate	Typically [5e-4, 1e-4, 5e-5]

GRU Model - Making predictions

Results

Matchpoints 23-25

Outline II

Introduction

Model & Setup

Results

Discussion

Conclusion

12/16

Matchpoints 39-40

70

Block (matchpoint number)

75 80

5

10

15

35

-3

95

100

20

Frequency (# of blocks)

10

30

Results

Run	GRU counting	GICC counting	Difference	Summary
NGRIP $K = 2$	1395	1394	0.07%	Figure 20
NGRIP $K = 3$	1354	1394	2.87%	Figure 29
GRIP $K=2$	$1353 \ (1382)$	1395	3.01%~(0.93%)	Figure 20
GRIP $K = 3$	1355 (1384)	1395	$2.86\% \ (0.78\%)$	Figure 29
NGRIP TOE	1215	1259	3.49%	Figure 31
GRIP TOE	$1204 \ (1233)$	1259	$4.36\% \ (2.06\%)$	Figure 31
$\overline{\text{DYE-3 } K = 2}$	3724	3814	2.39%	Figure 33
DYE-3 $K = 3$	3749	3814	1.70%	Figure 33
DYE-3 'TOE'	3439	3414	0.73%	Figure 37

Table 4: Summary of the overall model performance for each run. Note that this is merely differences for the total count in the existing timescales versus the model predictions. A better overview of the performance can be found in the figures referenced in the rightmost column.

Discussion

- Training and evaluation is done using manually identified annual layers
- Model assumes equidistant time-series input, but the data is a depth-series.
- Peak detection is sensitive to used parameter values.
- Training and testing on shorter sections of cores with similar characteristics is recommended.

Appendix A - Hyperparameter tuning

Appendix B - Perturbed data for feature importance

Appendix C - Model

of Input

 $(H \times 1)$

(g1,d)

 $g_{2,d}$

Bias

 $(H \times 1)$

 $(H \times H)$

 u_{21} u_{22} ··· u_{2H}

Gate	Weight matrix	Summary	Weight matrix	Previous
z, r, \hat{h}	W	c	U	hidden state
$H \times 1)$	$(H \times 2H)$	$(2H \times 1)$	$(H \times H)$	$(H \times 1)$
$\langle g_{1,d} \rangle$	$\left(w_{11} \ w_{12} \ \cdots \ w_{1,2H} \right)$	$\begin{pmatrix} c_{1,d} \end{pmatrix}$	$u_{11} u_{12} \cdots u_{1H}$	$\begin{pmatrix} h_{1,d-1} \end{pmatrix}$
$g_{2,d}$	$w_{21} \ w_{22} \ \cdots \ w_{2,2H}$	$c_{2,d}$	u_{21} u_{22} ··· u_{2H}	$h_{2,d-1}$
: =	I I I N. I.	+	1 1 % 1	
$(g_{H,d})$	$\left\langle w_{H1} \ w_{H2} \cdots \ w_{H,2H} \right\rangle$	$\langle c_{2H,d} \rangle$	$u_{H1} u_{H2} \cdots u_{HH}$	$h_{H,d-1}$

$$\begin{split} & \text{Output matrix Weight vector} & \text{Sigmoid output} \\ & (D \times H) & (B \times I) & (D \times 1) \\ & \tilde{S} = \begin{pmatrix} o_{11} & x_{12} & \cdots & x_{1H} \\ o_{21} & x_{22} & \cdots & x_{2H} \\ \vdots & \vdots & \ddots & \vdots \\ x_{D1} & x_{D2} & \cdots & x_{DH} \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_H \end{pmatrix} + b = \left(S_1 \ S_2 \cdots S_D\right) \end{split}$$

hidden state

 $h_{2,d-1}$

vector(s)

Appendix D - Sensitivity of peak detection

Prominence

Appendix E - Pseudo-data

Appendix F - Data

Appendix G: Glaciology

Appendix H: Annual Layer Thicknesses

