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Inspire:  
(transformer or 
"multi-head 
attention") and (hep-
ex or hep-ph or hep-
th)
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• JetClass is inclusive: 
• 10 types of jets 
• Kinematics, 
• PID, 
• trajectory displacement 

• JetClass is large:
• 100M jets for training à 10M each class
• 5M for validation
• 20M for test à 2M each class

H ! 4qH ! bb̄ H ! cc̄ H ! gg H ! `⌫qq
0

q/gt ! b`⌫t ! bqq0 W ! qq0 Z ! qq̄

"Particle Transformer For Jet Tagging" H. Qu, C. Li, S. Qian  

100 million jets for training

https://arxiv.org/abs/2202.03772
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1,800,000,000,000

(1.6% of neurons in your brain) 

175,000,000,000

(0.16% of neurons in your brain) 

GPT-3 GPT-4 (MoE) 



semianalysis 2023 

Train (GPT-4):  
• 2.1525 floating point operations 
• ~25,000 A100 GPUs  
• 90-100 days 
• $63 million 
• Trained on 13 trillion tokens

https://www.semianalysis.com/p/gpt-4-architecture-infrastructure


semianalysis 2023 

Train (GPT-4):  
• 2.1525 floating point operations 
• ~25,000 A100 GPUs  
• 90-100 days 
• $63 million 
• Trained on 13 trillion tokens

Inference (GPT-4):  
• Multiple clusters of 128 GPUs 
• Model carefully mapped onto hardware

https://www.semianalysis.com/p/gpt-4-architecture-infrastructure


?
~700 GB  
(175B × 4B/par) 
→ O(101)> single GPU memory 

~350 GB 
(175B × 2B/par) 
→ 11 NVIDIA V100  ($10 000/ea)

→

→



AI & Memory Wall

5 of these to fit one 
GPT-3 at inference 
time! Price: $17,000

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


Kaplan et al. (2020)
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Figure �.�: Test loss of a languagemodel vs. the amount
of computation in peta�op/s-day, the data set size in
tokens, that is fragments of words, and the model size
in parameters [Kaplan et al., ����].
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FlashAttention 

https://arxiv.org/abs/2205.14135


O(1) ms O(1) ms O(1) ns

ASIC/GPU ASIC FPGA

EDGE



EFFICIENT ML ALGORITHMS




Low power

On-device

Low-latency

High-throughput

(Data-efficient)

https://arxiv.org/abs/2106.08962
https://www.tinyml.org/


Resources: 128 interconnected GPUs 
Latency :    10 seconds



Resources: 128 interconnected GPUs 
Latency :    10 seconds

Resources: 1 single chips 
Latency:      1 millionth of a second 
Throughput:   5% of internet traffic
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25 ns

7.5 m

2.2·1011 protons

2,500 bunches of 
 100 billion protons, 

11,000 rotations per second
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25 ns

1011 protons 
6.8 TeV

~60 pp collisions 
per crossing

7.5 m

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

6 cm



E=mc2
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On-detec tor  ML

1 billion collisions /s 
~1 MB of data / collision 

~1 PB of data / s
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tHiggs: 
125 GeV

Masses span 9 orders of magnitude!
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https://arxiv.org/pdf/1407.0558.pdf


 

cmsexperiment.web.cern.ch 

We had to collide billions of protons,  
only around 10 signal events were needed to claim discovery!

https://arxiv.org/pdf/1407.0558.pdf
https://cmsexperiment.web.cern.ch/news/using-golden-decay-channel-understand-production-higgs-boson


 

cmsexperiment.web.cern.ch 

We had to collide billions of protons,  
only around 10 signal events were needed to claim discovery!

https://arxiv.org/pdf/1407.0558.pdf
https://cmsexperiment.web.cern.ch/news/using-golden-decay-channel-understand-production-higgs-boson


The  
Standard  

Model
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1 billion collisions /s 
~1 MB of data / collision 

~1 PB of data / s
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1 PB of data / second



Higgs produced 
~1 in a billion collisions! 

Saving all collisions not useful  
(even if we could)! 
 

13 TeV

“Probability” of  
producing a Higgs

“Probability” of  
producing “anything”
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2 step rate reduction 
(hardware+software)

Software rate reduction 
(GPU+CPU)

2 step rate reduction 
(hardware+software)

Continous read-out 
(CPU+GPU)
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2 step rate reduction 
(hardware+software)
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Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

Data temporarily stored  
in detector electronics for 4 µs
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

5% internet traffic to L1 
(63 Tb/s)

Fast ML at the Edge - Sioni Summers8 March 2024

CMS Level 1 Trigger
• Phase 2 Upgrade of CMS L1T will have hundreds of boards with FPGAs like 

those shown below - AMD/Xilinx Ultrascale+ FPGAs 

• Data rate of multiple terabits per second into / out of each board on optical 
fibres 

• System organised in layers with normally ~ 1-2 μs per step 

- Reducing raw detector data into physics objects (e.g. track finding: hits to 
tracks) 

- New event every 25 ns, latency for trigger decision for one event 12.5 μs 

• Final output is one bit: keep or discard event

9

Detector‘Counting Room’ 
(L1 Trigger)

HLT
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

L1 trigger: 
~1000 Xilinx/AMD 
Ultrascale FPGAs 

Decide which event to 
keep within ~4 µs latency 

Discard >99% of 
collisions!

5% internet traffic to L1 
(63 Tb/s)

Fast ML at the Edge - Sioni Summers8 March 2024
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

L1 bit: 
Accept = 1 
Reject = 0
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

DATA 
99.72% of events rejected! 

110 thousand events/
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

DATA 
99.72% of events rejected! 

110 thousand events/
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

High Level Trigger: 
25’600 CPUs / 400 GPUs 

Latency: 3-400 ms 

Reject further 99%!
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TIER 0: ∞

High Level Trigger:  
Latency 0(100) ms

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

DATA 
99.9975% of events rejected! 

1000 events/second 
~5 GB/s
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

DATA 
99.9975% of events rejected! 

1000 events/second 
~5 GB/s
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

0.0025% of collision events remaining

DATA 
99.9975% of events rejected! 

1000 events/second 
~5 GB/s
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To make sure we select “the right” 0.0025%, algorithms must be 

• Fast (get more data through) 
• Accurate (select the right data) 

HIG-19-001 

https://cds.cern.ch/record/2668684?ln=en


New Physics is produced less 
than 1 in a trillion (if at all) 
 
Need more data!

13 TeV

“Probability” of  
producing “anything”

New Physics?



High Luminos i ty  LHC

New Physics is produced 1 in a trillion 
• Need more collisions to observe rare processes 

High Luminosity LHC 
• ⨉10 data size 
• ⨉3 collisions/s 

 
 
 
 

LHC (TODAY!) MAJOR UPGRADE HL-LHC

2022 - 2025 2026 - 2028 2029 - 2038
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High Luminos i ty  LHC

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

78 vertices 
(average 60)

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

200 vertices  
(average 140)

LHC

Run 3 Run 4+5

6 cm



CMS HGCAL TDR

Maintain physics acceptance → better detectors 

CMS High Granularity (endcap) calorimeter 
•X20 times more readout channels (6.5 million!!) 

More collisions  
More readout channels

http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf
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Our  current  a lgor i thms won’t  be  ab le  to  cope  wi th  HL-
LHC data  ra tes !  Need innovat ion !  

Can  we use  modern  Machine  Learn ing  to  
be  fas ter  

more  accurate  
and  do  more?  



Level-1 trigger:  
Latency O(1) µs Detector: 

40 MHz 
~Pb/s

Fast inference on specialised hardware

FPGA inferenceASIC inference

GPU inference

HLT trigger:  
Latency O(100) ms 
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

HL-LHC Level-1 :

Complete re-design of Level-1
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

HL-LHC Level-1 :

Complete re-design of Level-1 
• Charged particle tracks (6.4 Tb/s, 200 FPGAs) 

 
 
 
 Challenges

• Price to pay for high luminosity  
— extreme pileup  
‣ At HL-LHC, expect on average  
200 overlapping pp collisions 

• Particularly challenging for  
trigger system 
‣ Inclusion of tracking central to 

mitigating effects of pileup

!4

ATLAS & CMS:  Trigger System
• Current trigger systems

• L1 trigger
• Hardware-based, implemented in custom-built electronics
• Muon & calorimeter information with reduced granularity, no tracking information

• High-Level Trigger (HLT)
• Software-based, executed on large computing farms
• Tracking information & full detector granularity
• ATLAS use level-2 & event filter, CMS single-step HLT

19

ATLAS:  3 physical levels CMS:  2 physical levels

Wesley Smith, U. Wisconsin, October 3, 2013 ECFA – HL-LHC: – Trigger & DAQ -  3 

Journey to HL-LHC 
2012-2013 run: 

•  Lumi = 7 x 1033, PU = 30, E = 7 TeV, 50 nsec bunch spacing 
•  2012 ATLAS, CMS operating: 

•  L1 Accept ≤ 100 kHz,  
•  Latency ≤ 2.5 (AT), 4 µsec (CM) 
•  HLT Accept ≤ 1 kHz 

Where ATLAS & CMS will be: 
•  Lumi = 5 x 1034 

•  <PU> = 140, Peak PU = 192 (increase × 6)  
•  E = 14 TeV (increase × 2)  
•  25 nsec bunch spacing (reduce × 2) 
•  Integrated Luminosity > 250 fb-1 per year  

Need to establish scenario for L1 Accept, Latency, HLT 
Accept & new trigger “features” (e.g. tracking trigger) 

Front  end pipelines 

Readout buffers 

Processor farms 

Switching network 

Detectors 

Lvl-1 

HLT 

Lvl-1 

Lvl-2 

Lvl-3 

Front end pipelines 

Readout buffers 

Processor farms 

Switching network 

Detectors 

ATLAS: 3 physical levels CMS: 2 physical levels 

Detectors

Front end 
pipelines

Readout 
buffers
Switching 
network
Processor 
farms

Detectors
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

HL-LHC Level-1 :

Complete re-design of Level-1 
• Charged particle tracks 
• Particle Flow (40 FPGAs) 
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� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

HL-LHC Level-1 :

Complete re-design of Level-1 
• Charged particle tracks 
• Particle Flow 
• HGCal (4 Tb/s, 200 FPGAs) 

 
 
 
 

Fast ML at the Edge - Sioni Summers8 March 2024

CMS Detector Upgrade 2: HGCal
• High granularity calorimeter: silicon sampling calorimeter for the endcaps 

• 6.5 million channels in 50 layers 

- Very fine transverse and longitudinal segmentation  

• Dedicated ASIC to prepare data for trigger reconstruction - more later 

• Trigger backend comprises around 200 FPGAs 

- Reconstructing 3D clusters: 4 Tb/s clusters sent downstream

8

arXiv:1708.08234CMS-TDR-019
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

HL-LHC Level-1 :

Complete re-design of Level-1 
• Charged particle tracks 
• Particle Flow 
• HGCal 

Input data 
• 2 Tb/s → 63 Tb/s 

Latency 
• 4 µs → 12 µs 

 
 
 
 Extremely high data complexity,


Extremely little time
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a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

CALORIMETRY: 
370 FPGAs MUONS: 

96 FPGAs

TRACKING 
174 FPGAs

12.5 µs

Trigger 
accept/reject

5 µs

PARTICLE 
FLOW: 

66 FPGAs 

GLOBAL 
TRIGGER: 
12 FPGAs 

*54 for HGCAL only!

63 Tb/s

Xilinx Ultrascale+ FPGAs
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OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
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a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

Work on 18 events  
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Latency (resource parallelism)


Can work on different parts of problem, different data simultaneously
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FPGAs repeatable and predictable latency
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Data flow architecture

• Tailored hardware for a model 

• Each layer is separate compute unit 

• Stay on-chip 

• “Decisions are design time”

https://arxiv.org/abs/1804.06913
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•Quantization 

• Pruning 

• Parallelisation 

• Knowledge distillation



Quantization

Floating point 32:  
4B numbers in [-3.4e38, +3.4e38] 



Quantization

Quantising: 
int8 28=256 numbers in [-128,127] 

  xq = Clip(Round(
xf

scale
))

https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/


AMD UltraScale+ MPSoC ZU19EG (conservative estimates)
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Efficient NN design: quantization
• In the FPGA we use fixed point representation

- Operations are integer ops, but we can represent 
fractional values

• But we have to make sure we’ve used the correct data types!
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Figure 9: Ratios of the fixed point AUC and Expected AUC versus fixed point precision for the
fully connected three-hidden-layer network. Optimal performance with no loss of classification power
corresponds to ratios of 1. (left) The number of integer bits is scanned. (right) The number of integer
bits is fixed to six, and the number of fractional bits is scanned. The various colored lines are AUC
performance for di�erent jet substructure taggers (q,g,W ,Z ,t).

above the point where underflows/overflows do not occur and AUC/Expected AUC = 1. With this
number of integer bits, we then scan in the number of fractional bits. Optimal performance is achieved
with about 16 bits in total.

We perform similar scans to compare the compressed three-hidden-layer model AUC with that of
the uncompressed model. Agreement with the Expected AUC occurs at roughly the same precision,
as shown in Fig. 10.

3.2 Latency and resource estimates in HLS

We now explore how the FPGA resources required by the model are influenced by

• compression, the three-hidden-layer model with 70% of the parameters pruned;

• quantization, the precision of the inputs, weights, and biases; for this particular network we
focus on scans of fixed point precision <X,6> based on our discussion in Sec. 3.1. We scan
above the point where we reach optimal performance to show the benefits of quantization and
the resource usage one would expect when higher precision is required.

• parallelization, the number of times a given multiplier is used for a layer computation; using a
multiplier once is the most parallel (and quickly) a layer can be computed and is what we call a
reuse factor of 1.

With these variables as handles on how to control the implementation of the network, we monitor the
following firmware implementation metrics:

• resources: DSPs, FFs, and LUTs;

– 15 –

Small bit width, severe drop in accuracy

arXiv:1804.06913 

https://arxiv.org/abs/1804.06913
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Some layers more accommodating for aggressive quantization, others require expensive arithmetic
• heterogeneous quantization 

Est imat ing  energy  and  s ize

https://arxiv.org/abs/1905.03696
https://github.com/google/qkeras/tree/master/qkeras/qtools
https://ieeexplore.ieee.org/document/6757323


Some layers more accommodating for aggressive quantization, others require expensive arithmetic
• heterogeneous quantization 

For edge inference, need best possible quantization configuration for
• Highest accuracy ↑…
• … and lowest resource consumption ↓ 

→ hyper-parameter scan over quantizers which considers energy and accuracy simultaneously

Est imat ing  energy  and  s ize

https://arxiv.org/abs/1905.03696
https://github.com/google/qkeras/tree/master/qkeras/qtools
https://ieeexplore.ieee.org/document/6757323
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TABLE II. Per-layer energy estimation for the baseline floating point model and a QKeras quantized 6-bit (Q6) model.

Model Accuracy [%] Per-layer energy consumption [pJ] Total energy [µJ] Total bits

Dense ReLU Dense ReLU Dense ReLU Dense Softmax

BF 74.4 1735 53 3240 27 1630 27 281 11 0.00700 61446

Q6 74.8 794 23 1120 11 562 11 99 11 0.00263 26334

B. Defining a forgiving factor

With the high-level estimate of a given layers energy
consumption provided by QTools, we define a forgiving
factor to be targeted during automatic quantization of
the model, providing a total loss function which combines
energy cost and accuracy. The forgiving factor allows one
to tolerate a degradation in a given metric, such as model
accuracy, if the model gain in terms of some other metric,
like model size, is significantly larger. Here, we allow the
forgiving metric to be either minimization of the model
bit-size or minimization of the model energy consumption.
The forgiving factor is defined by

FF = 1 +�acc ⇥ logR(S⇥
Cref

Ctrial
), (1)

where �acc is the tolerated reduction in accuracy in per-
cent, R is the factor stating how much smaller energy
the optimized model must have compared to the origi-
nal model (as a multiplicative factor to the FF metric)
and S is a parameter to reduce the reference size, e↵ec-
tively forcing the tuner to choose smaller models. The
parameters Cref and Ctrial refer to the cost (energy or
bits) of the reference model and the quantization trial
model being tested, respectively. The forgiving factor
can be interpreted in the following way: If we have a
linear tolerance for model accuracy degradation (or any
other performance metric), we should be able to find a
multiple of that degradation in terms of the cost reduction
of the implementation. It enables an automatic quanti-
zation procedure to compensate for the loss in accuracy
when comparing two models, by acting as a multiplicative
factor.

Automatic quantization and re-balancing are then per-
formed by treating quantization and re-balancing of an
existing DNN as a hyper parameter search in Keras
Tuner [44] using random search, hyperband [45] or Gaus-
sian processes. We design an extension to Keras Tuner
called AutoQKeras, which integrates the forgiving factor
defined in Eq. 1 and the energy estimation provided by
QTools. This allows for simultaneously tuning of the
model quantization configuration and the model architec-
ture. For instance, AutoQKeras allows for tuning of the
number of filters in convolutional layers and the number
of neurons in densely connected layers. This fine-tuning
is critical, as when models are strongly quantized, more
or fewer filters might be needed. Fewer filters might be
necessary in cases where a set of filter coe�cients get
quantized to the same value.
Consider the example of quantizing two set of filter

coe�cient [�0.3, 0.2, 0.5, 0.15] and [�0.5, 0.4, 0.1, 0.65].

If we apply a binary quantizer with scale =⌃
log2(

P
|w|
N )

⌥
, where w are the filter coe�cients and

N is the number of coe�cients, we will end up
with the same filter binary([�0.3, 0.2, 0.5, 0.15]) =
binary([�0.5, 0.4, 0.1, 0.65]) = [�1, 1, 1, 1] ⇥0.5. In this
case, we are assuming a scale is a power-of-2 number
so that it can be e�ciently implemented as a shift oper-
ation. On the other hand, more filters might be needed
as deep quantization drops information. To recover some
of the boundary regions in layers that perform feature
extraction, more filters might be needed when the layer
is quantized. Lastly, certain layers are undesirable to
quantize, often the last layer of a network. In principle,
we do not know if by quantizing a layer we need more
or less filters, and as a result, there are advantages to
treating these problems as co-dependent problems, as we
may be able to achieve a lower number of resources.

In AutoQKeras, one can specify which layers to quantize
by specifying the index of the corresponding layer in Keras.
If attempting to quantize the full model in a single shot,
the search space becomes very large. In AutoQKeras,
there are two methods to cope with this: grouping layers
to use the same choice of quantization, or quantization
by blocks. For the former, regular expressions can be
provided to specify layer names that should be grouped
to use the same quantization. In the latter case, blocks
are quantized sequentially, either from inputs to outputs
or by quantizing higher energy blocks first. If blocks are
quantized one-by-one, assuming each block has N choices
and the model consists of B blocks, one only needs to
try N ⇥B, rather than NB options. Although this is an
approximation, it is a reasonable trade-o↵ considering the
explosion of the search space for individual filter selections,
weight and activation quantization.

Whether to quantize sequentially from inputs to out-
puts or starting from the block that has the highest energy
impact, depends on the model. For example for a network
like ResNet [46], and if filter tuning is desirable, one needs
to group the layers by the ResNet block definition and
quantize the model sequentially to preserve the number of
channels for the residual block. A few optimizations are
performed automatically during model training. First, we
dynamically reduce the learning rate for the blocks that
have already been quantized so that they are still allowed
to train, but at a slower pace. Also, we dynamically adjust
the learning rate for the layer we are trying to quantize
as opposed to the learning rate of the unquantized layers.
Finally, we transfer the weights of the model blocks we
have already quantized whenever possible (when shapes
remain the same). We then use AutoQKeras to find
the optimal quantization configurations for the baseline

Maximize accuracy + minimizing cost in hyper parameter scan over quantizers: 
AutoQKeras 

Forgiving Factor = 1 + Δaccuracy × lograte(S ×
Costref

Costtrial
)

Some layers more accommodating for aggressive quantization, others require expensive arithmetic
• heterogeneous quantization 

For edge inference, need best possible quantization configuration for
• Highest accuracy ↑…
• … and lowest resource consumption ↓ 

→ hyper-parameter scan over quantizers which considers energy and accuracy simultaneously
 
QTools: Estimate QKeras model bit and energy consumption, assuming 45 nm Horowitz process

Est imat ing  energy  and  s ize

https://github.com/google/qkeras/blob/master/notebook/AutoQKeras.ipynb
https://arxiv.org/abs/1905.03696
https://github.com/google/qkeras/tree/master/qkeras/qtools
https://ieeexplore.ieee.org/document/6757323


As optimization progresses, 
best model accuracy/size  
trade-off is found!

DOI 10.1088/2632-2153/ac0ea1 

Example: One convolutional layer

https://iopscience.iop.org/article/10.1088/2632-2153/ac0ea1


Dense (32) 
Ternary

Input (16) 
〈16,6〉

Dense (32) 
〈2,1〉

ReLU ReLU ReLU Softmax

Dense (5) 
w: Binary b:〈8,3〉

Dense (64) 
〈4,0〉

 〈〉〈16,6〉〈4,2〉  〈3,1〉  〈4,2〉

Nature Machine Intelligence 3 (2021)

https://www.nature.com/articles/s42256-021-00356-5


Multiplications move to LUTs at bit width <10.  



Quantized ONNX (QONNX), J. Mitrevski et. al 

Brevitas like QKeras, but for PyTorch 
• QAT library 
• Support most common layers and activation functions 

hls4ml collaborate with AMD/Xilinx FINN team to develop QONX 
• Introducing ‘Quant’ node to ONNX graph 
• Brevitas (PyTorch) and QKeras (Keras) can export QONNX 
• hls4ml and FINN can import QONNX 

chisel4ml 

Brevi tas and QONNX

https://indico.cern.ch/event/1156222/contributions/5062813/attachments/2521120/4335054/QONNX%20FastML.pdf
https://github.com/Xilinx/brevitas
https://github.com/cs-jsi/chisel4ml
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Efficient NN design: compression

• DSPs (used for multiplication) are often 
limiting resource

- maximum use when fully parallelized

- DSPs have a max size for input (e.g. 
27x18 bits), so number of DSPs per 
multiplication changes with precision

Fully parallelized 
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

Pruning
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Original image 

Hooker et al. (2021)

From Brian Bartoldson

Less accurate Less robust to noise



Diffenderfer, Bartoldson, et al. (2021)

There  ex is ts  a  opt imal  network  WITHIN each  network  ( lo t tery  t i cket )   
Uncover  i t  through pruning!

Pruned
Unpruned

Bet ter !

From Brian Bartoldson



 
 
 
 
 
 
 

→Knowledge Dis t i l la t ion

Can we have the best of both worlds? 

Tra in In ference
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is cat

is dog
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is cat = 0.03

is dog = 0.97
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is dog = 1

True labelsPredicted labels

Soft labels contain information!!



is cat = 0.89

is dog = 0.11

is cat = 1

is dog = 0

True labels

Predicted labels

Teacher 
(already trained)

Train student to learn both 
true and predicted (teacher) labels! 

Student learns subtle learned features from teacher! 

Distilled  
knowledge

Ltotal = β × LDistillation + α × Lstudent

Cat



https://arxiv.org/abs/2210.05189

https://arxiv.org/abs/1804.06913


https://arxiv.org/abs/2210.05189

From the IML workshop

https://arxiv.org/abs/1804.06913
https://indico.cern.ch/event/1297159/contributions/5766806/


 

  

qDNN

BDT

https://indico.cern.ch/event/1283970/contributions/5554339/
https://arxiv.org/abs/1804.06913


Floating point model Compressed model 
(Quantised + Pruned) Firmware design

 

Quantised input data

https://github.com/fastmachinelearning/hls4ml-tutorial/tree/main
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On-detec tor  ML

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

AI inside our detectors



The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC
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jet

+

Layers projected onto one plane

-no timing cut applied-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Layers projected onto one plane

-require hits within 90ps time window-

200 PU

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

+
200 vertices
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BUT:  Cannot  read  out  a l l  these  channels  
fas t  enough for  L1  to  t r igger !
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HGCAL FE electronics requirements: 
• Low noise (<2500e) and high dynamic range 

(0.2fC -10pC).

• Timing information to tens of picoseconds.


• Radiation tolerant. 
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC
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Encoder architecture
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Encoded dataEncoded data

ENCODE DECODEBottleneck 
(lower dim.  

space)

Var ia t ional  Autoencoder

Encoder architecture

4

ECON-T, D. Noonan 

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf


Transmit encoded data!

Encoded data
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HGCAL FE electronics requirements: 
• Low noise (<2500e) and high dynamic range 

(0.2fC -10pC).

• Timing information to tens of picoseconds.


• Radiation tolerant. 
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

ASIC

On ASIC

ECON-T, D. Noonan 

AEs for compression also at LHCb! 

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf
https://sse-ml-lhcb.gitlab.io/
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12.5 µs

Trigger 
accept/reject

5 µs

Nanosecond ML inference on FPGAs!

40 billion inferences/s during HL-LHC

HEP developed 
libraries for fast ML 
on FPGAs 




ML for  reconstruc t ion

On FPGA

Encoder architecture

4

Encoded data



ML for  reconstruc t ion

On FPGA

Encoder architecture

4

Encoded data

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12
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VBF H (γγ)

jet

+

Layers projected onto one plane

-no timing cut applied-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Layers projected onto one plane

-require hits within 90ps time window-

200 PU



ML for  reconstruc t ion

EPJC Vol 79 608 (2019)  

2 charged pions

v1

v2

v3

On FPGA: 3.5 µs to cluster energy deposits into disentangled showers from individual particles

v1'

v3'

vʹ5 = f ⃗́ 5(m1→5,…,m6→5)

m1→5 = g(v⃗1,v⃗5)

https://link.springer.com/article/10.1140/epjc/s10052-019-7113-9


In HL-LHC, will need to do track finding at L1 
• O(1000) hits, O(100) tracks, 40 MHz rate, ~5 µs latency 

Graph Neural Networks for fast charged particle tracking 
 
 
 
 
 
 

DOI:10.3389/fdata.2022.828666 

ML for  t rack ing

295 ns

395 ns

Throughput-optimized for L1 applications, 
resource-optimised for co-processing

https://www.frontiersin.org/articles/10.3389/fdata.2022.828666/full


Fast  je t  tagg ing

cds.cern.ch/record/2814728/ 

??

https://cds.cern.ch/record/2814728/files/DP2022_021.pdf


Fast  je t  tagg ing

cds.cern.ch/record/2814728/ 

(Can also do 90 ns transformers for jet tagging!)

??

https://cds.cern.ch/record/2814728/files/DP2022_021.pdf
https://www.doc.ic.ac.uk/~wl/papers/22/fpt22fw.pdf
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Searches for new particles at LHC

ARE WE LOOKING IN THE WRONG WAY?



The sc ient i f i c  method

Do objective 
observation

Ask questions

Gather information

Form hypothesis

Test prediction

Do analysis

Arrive at conclusion

Are results as 
predicted?

Use experimental data 
as hypothesis

Ask new questions

Look at nature

Form and test 
hypothesis



Searches  a t  LHC

Replaced by:

Standard Model (MC)

Replaced by:

Signal hypothesis (MC)

Searches at LHC (almost) always start with by 
• assuming Standard Model 
• and some signal hypothesis 

No longer learn from observation 
• Blind analysis only way we perform searches

Do objective 
observation

Ask questions

Gather information

Form hypothesis

Test prediction

Do analysis

Arrive at conclusion

Are results as 
predicted?

Use experimental data 
as hypothesis

Ask new questions

Whatever you do, 
don’t look at nature



LEARN THIS FROM 
DATA

LOOK FOR ANYTING 
THAT DOESNT LOOK 

LIKE THIS

Some variable of interest

Anomaly detection for New Physics searches



Anomaly Detection triggers

Energy (GeV)Trigger threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Level-1  re jec ts  >99%  o f  events !  
Is  there  a  smarter  way  to  se lec t?



Anomaly Detection triggers

Energy (GeV)Trigger threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Reconstruction error
AD threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Everything here 
is normal

Everything here 
is abnormal



Types of anomaly detection

Out l ier  de tec t ion Detec t ing  overdens i t ies
Find ( resonant )  overdens i t ies  in  d is t r ibut ionsFind  (non-resonant )  out-o f-d is t r ibut ion  datapo in ts   

Two Types of Anomaly Detection
Outlier Detection 

[Nonresonant]

[1805.02664, 1806.02350, 1902.02634, 1912.12155, 2001.05001, 2001.04990, 2012.11638, 2106.10164, 
2109.00546, 2202.00686, 2203.09470, 2208.05484, 2210.14924, 2212.11285, ….]

[1807.10261, 1808.08979, 1808.08992, 1811.10276, 1903.02032, 1912.10625, 2004.09360, 2006.05432, 
2007.01850, 2007.15830, 2010.07940, 2102.08390, 2104.09051, 2105.07988, 2105.10427, 2105.09274, 
2106.10164, 2108,03986, 2109.10919, 2110.06948, 2112.04958, 2203.01343,2206.14225, 2304.03836, … ]

• Searching for unique 
or unexpected events 

• In HEP, this is the tails 
of distributions

Finding 
Overdensities 

[Resonant]

• Analagous to the 
traditional bump hunt

[1207.7214]

Two Types of Anomaly Detection

Finding 
Overdensities 

[Resonant]

Outlier Detection 
[Nonresonant]

[1805.02664, 1806.02350, 1902.02634, 1912.12155, 2001.05001, 2001.04990, 2012.11638, 2106.10164, 
2109.00546, 2202.00686, 2203.09470, 2208.05484, 2210.14924, 2212.11285, ….]

[1807.10261, 1808.08979, 1808.08992, 1811.10276, 1903.02032, 1912.10625, 2004.09360, 2006.05432, 
2007.01850, 2007.15830, 2010.07940, 2102.08390, 2104.09051, 2105.07988, 2105.10427, 2105.09274, 
2106.10164, 2108,03986, 2109.10919, 2110.06948, 2112.04958, 2203.01343,2206.14225, 2304.03836, … ]

• Searching for unique 
or unexpected events 

• In HEP, this is the tails 
of distributions

• Analagous to the 
traditional bump hunt

[1207.7214]



Types of anomaly detection

Out l ier  de tec t ion Detec t ing  overdens i t ies

pbg(x|mjj) pbg(x|mjj) 

psig+bg(x|

Autoencoders (AEs)
AEs work by learning compression to a latent space which 
preserves the original information.

Variational AEs (VAEs) add a 
stochastic component by having 
the decoder sample from latent 
space. There are multiple different 
choices for anomaly score.

The reconstruction fidelity gives an anomaly score. 

[Hajer et al: 1807.10261, Roy, Vijay: 1903.02032, Cheng et al: 2007.01850, Beekveld et al: 2010.07940, Batson 
et al: 2102.08380, Finke et al: 2104.09051, Govorkova et al: 2108.03986, Collins: 2109.10919, Fraser et al: 
2110.06948, Ngairangbam et al: 2112.04958, Dillon et al: 2206.14225, Roche et al: 2304.03836,…]

[Cerri et al: 1811.10276]

[Hajer et al: 1807.10261]  
[Heimel et al: 1808.08979] 
[Farina et al: 1808.08992] 

Non-resonant, tail of distributions 
• Often (variational) auto-encoders 
• Useful for triggering! 

Caveats 
• What’s a good metric for optimisation? 
• How to use selected events in analysis?

Resonant, similar to a bump hunt 
• Density estimation methods 
• Useful for offline analysis 

Caveats 
• Relies on a definition of “sideband” and a sizeable signal



Outlier detection
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Outlier detection

ℜk

x x̂

n × m n × m
E.g 3-prong gluino fat jet

Harder

Cascade decays to light neutralinos (as is expected from natural SUSY) with 

RPV can result in highly boosted resonances (fat jets).
Current limits from multijet searches are weakened in this regime, for various 

reasons:

• the merging jets lead the event to fail the Njet threshold
• there is a hard cut on fat jet mass
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Figure 1: Diagrams for the benchmark processes considered for this analysis. The black lines represent Standard

Model particles, the red lines represent SUSY partners, the grey shaded circles represent e�ective vertices that

include o�-shell propagators (e.g. heavy squarks coupling to a �̃0
1 neutralino and a quark), and the blue solid

circles represent e�ective RPV vertices allowed by the baryon-number-violating � 00 couplings with o�-shell

propagators (e.g. heavy squarks coupling to two quarks). Quark and antiquark are not distinguished in the

diagrams.

2 ATLAS detector

The ATLAS detector [25] covers almost the whole solid angle around the collision point with layers

of tracking detectors, calorimeters and muon chambers. The inner detector, immersed in a magnetic

field provided by a solenoid, has full coverage in � and covers the pseudorapidity range |⌘ | < 2.5.1 It

consists of a silicon pixel detector, a silicon microstrip detector and a transition radiation straw-tube

tracker. The innermost pixel layer, the insertable B-layer, was added between Run-1 and Run-2 of

the LHC, at a radius of 33 mm around a new, thinner, beam pipe [26]. In the pseudorapidity region

|⌘ | < 3.2, high granularity lead/liquid-argon (LAr) electromagnetic (EM) sampling calorimeters are

used. A steel/scintillator tile calorimeter provides hadronic calorimetry coverage over |⌘ | < 1.7. The

end-cap and forward regions, spanning 1.5 < |⌘ | < 4.9, are instrumented with LAr calorimetry for

both the EM and hadronic measurements. The muon spectrometer surrounds these calorimeters, and

comprises a system of precision tracking chambers and fast-response detectors for triggering, with

three large toroidal magnets, each consisting of eight coils, providing the magnetic field for the muon

detectors. A two-level trigger system is used to select events [27]. The first-level trigger is implemented

in hardware and uses a subset of the detector information. This is followed by the software-based

high-level trigger, reducing the event rate to about 1 kHz.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector

and the z-axis along the beam direction. The x-axis points toward the centre of the LHC ring, and the y-axis points

upward. Cylindrical coordinates (r, �) are used in the transverse plane, � being the azimuthal angle around the beam pipe.

The pseudorapidity ⌘ is defined in terms of the polar angle ✓ by ⌘ ⌘ � ln[tan(✓/2)].

3

 is Mean Squared Error , “high error events” proxy for “degree of abnormality”ℒ(x, x̂) (x, x̂)
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field provided by a solenoid, has full coverage in � and covers the pseudorapidity range |⌘ | < 2.5.1 It
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the LHC, at a radius of 33 mm around a new, thinner, beam pipe [26]. In the pseudorapidity region

|⌘ | < 3.2, high granularity lead/liquid-argon (LAr) electromagnetic (EM) sampling calorimeters are

used. A steel/scintillator tile calorimeter provides hadronic calorimetry coverage over |⌘ | < 1.7. The

end-cap and forward regions, spanning 1.5 < |⌘ | < 4.9, are instrumented with LAr calorimetry for

both the EM and hadronic measurements. The muon spectrometer surrounds these calorimeters, and

comprises a system of precision tracking chambers and fast-response detectors for triggering, with

three large toroidal magnets, each consisting of eight coils, providing the magnetic field for the muon

detectors. A two-level trigger system is used to select events [27]. The first-level trigger is implemented

in hardware and uses a subset of the detector information. This is followed by the software-based

high-level trigger, reducing the event rate to about 1 kHz.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector

and the z-axis along the beam direction. The x-axis points toward the centre of the LHC ring, and the y-axis points

upward. Cylindrical coordinates (r, �) are used in the transverse plane, � being the azimuthal angle around the beam pipe.

The pseudorapidity ⌘ is defined in terms of the polar angle ✓ by ⌘ ⌘ � ln[tan(✓/2)].
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256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

 
1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

x̂

n × m

๏ Idea applied to tagging jets, 
in order to define a QCD-jet 
veto 

๏ Applied in a BSM search 
(e.g., dijet resonance) could 
highlight new physics signal 

๏ Based on image and physics-
inspired representations of 
jets  

 

Example: Jet autoencoders

12

Farina et al., arXiv:1808.08992
Heimel et al., arXiv:1808.08979

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino
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Following the left panel of Fig. 1 we use N = 40 constituents, after checking that an increase
to N = 120 does not make a measurable di↵erence. For jets with fewer constituents we
naturally fill the entries remaining in the soft regime with zeros.

To remove all information from the jet-level kinematics we boost all 4-momenta into the
rest frame of the fat jet. This also improves the performance of our network. Inspired
by recombination jet algorithms we can add linear combinations of these 4-vectors with a
trainable matrix Cij , defining a combination layer
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We allow for M = 10 trainable linear combinations. These combined 4-vectors carry informa-
tion on the hadronically decaying massive particles. In the original LoLa approach we map
the momenta k̃j onto observable Lorentz scalars and related observables [13]. Because this
mapping is not easily invertible we do not use it for the autoencoder. Instead, we extend the
4-vectors by another component containing the invariant mass,

k̃j =

0
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This defines a set of 51 extended 4-vectors, which form the input to our neural network.
Again, we use Keras [35] combined with Tensorflow [36]. Its architecture is shown in
Fig. 3. The layer immediately after the LoLa contains 51 ⇥ (4 + 1) = 255 units. Between
the second layer after LoLa and the last layer, the autoencoder network is symmetric. The
final output consist of 40 4-vector-like objects, which can be compared with the corresponding

Figure 3: Architecture of the 4-vector-based autoencoder network. The 255 input units
correspond to 55 LoLa-vectors with 4+1 entries each. The output only consists of 160 units,
because the extended 4-vectors only carry four independent observables.
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Real-time AI for HL-LHC and beyond (SNSF SG Proposal, T. K. Årrestad) 7

identifying instances from unknown categories, such as potential New Physics processes.

Each of these projects is substantial enough to be the subject of a PhD thesis. I propose allocating

one student to each project, under the supervision of the PI and assisted by a Postdoctoral

researcher. In the sections that follow, I will discuss the specifics of both projects.

2. Section b: Methodology

3. WP1: Towards end-to-end smart triggering for HL-LHC and beyond

3.1. The Level-1 hardware trigger
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Figure 3. Left: Diagram of the CMS L1 hardware trigger as foreseen for HL-LHC. The system

is located in a radiation shielded cavern right next to the CMS detector and consists of hundreds

of FPGAs mounted on custom boards. Each subsystem; calorimeters (orange), tracking detectors

(green) and muon chambers (light blue), are first reconstructed locally on hundreds of FPGAs.

This information is then sent forward to a system responsible of correlating the information from

all subdetectors using the Particle Flow algorithm (yellow). Finally, the global trigger receives all

trigger information for the final decision (pink) [8]. Right: An illustration of the final AI-powered

end-to-end reconstruction design proposed in WP1.

The CMS Level-1 trigger is designed in a hierarchical way, illustrated in Figure 3. Information

from each subdetector is first processed and reconstructed locally. For instance for the calorimeter,
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5

One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and 
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates 
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show 
the ECAL detector surface (cyan) and the muon stations (blue).
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5

One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and 
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates 
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show 
the ECAL detector surface (cyan) and the muon stations (blue).
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Types of anomaly detection

Out l ier  de tec t ion Detec t ing  overdens i t ies
Find ( resonant )  overdens i t ies  in  d is t r ibut ionsFind  (non-resonant )  out-o f-d is t r ibut ion  datapo in ts   

Two Types of Anomaly Detection
Outlier Detection 

[Nonresonant]

[1805.02664, 1806.02350, 1902.02634, 1912.12155, 2001.05001, 2001.04990, 2012.11638, 2106.10164, 
2109.00546, 2202.00686, 2203.09470, 2208.05484, 2210.14924, 2212.11285, ….]

[1807.10261, 1808.08979, 1808.08992, 1811.10276, 1903.02032, 1912.10625, 2004.09360, 2006.05432, 
2007.01850, 2007.15830, 2010.07940, 2102.08390, 2104.09051, 2105.07988, 2105.10427, 2105.09274, 
2106.10164, 2108,03986, 2109.10919, 2110.06948, 2112.04958, 2203.01343,2206.14225, 2304.03836, … ]

• Searching for unique 
or unexpected events 

• In HEP, this is the tails 
of distributions

Finding 
Overdensities 

[Resonant]

• Analagous to the 
traditional bump hunt

[1207.7214]
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Types of anomaly detection

Out l ier  de tec t ion Detec t ing  overdens i t ies

pbg(x|mjj) pbg(x|mjj) 

psig+bg(x|

Autoencoders (AEs)
AEs work by learning compression to a latent space which 
preserves the original information.

Variational AEs (VAEs) add a 
stochastic component by having 
the decoder sample from latent 
space. There are multiple different 
choices for anomaly score.

The reconstruction fidelity gives an anomaly score. 

[Hajer et al: 1807.10261, Roy, Vijay: 1903.02032, Cheng et al: 2007.01850, Beekveld et al: 2010.07940, Batson 
et al: 2102.08380, Finke et al: 2104.09051, Govorkova et al: 2108.03986, Collins: 2109.10919, Fraser et al: 
2110.06948, Ngairangbam et al: 2112.04958, Dillon et al: 2206.14225, Roche et al: 2304.03836,…]

[Cerri et al: 1811.10276]

[Hajer et al: 1807.10261]  
[Heimel et al: 1808.08979] 
[Farina et al: 1808.08992] 

Non-resonant, tail of distributions 
• Often (variational) auto-encoders 
• Useful for triggering! 

Caveats 
• What’s a good metric for optimisation? 
• How to use selected events in analysis?

Resonant, similar to a bump hunt 
• Density estimation methods 
• Useful for offline analysis 

Caveats 
• Relies on a definition of “sideband” and a sizeable signal
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Outlier detection

ℜk

x x̂

n × m n × m
E.g 3-prong gluino fat jet

Harder

Cascade decays to light neutralinos (as is expected from natural SUSY) with 

RPV can result in highly boosted resonances (fat jets).
Current limits from multijet searches are weakened in this regime, for various 

reasons:

• the merging jets lead the event to fail the Njet threshold
• there is a hard cut on fat jet mass
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Figure 1: Diagrams for the benchmark processes considered for this analysis. The black lines represent Standard

Model particles, the red lines represent SUSY partners, the grey shaded circles represent e�ective vertices that

include o�-shell propagators (e.g. heavy squarks coupling to a �̃0
1 neutralino and a quark), and the blue solid

circles represent e�ective RPV vertices allowed by the baryon-number-violating � 00 couplings with o�-shell

propagators (e.g. heavy squarks coupling to two quarks). Quark and antiquark are not distinguished in the

diagrams.

2 ATLAS detector

The ATLAS detector [25] covers almost the whole solid angle around the collision point with layers

of tracking detectors, calorimeters and muon chambers. The inner detector, immersed in a magnetic

field provided by a solenoid, has full coverage in � and covers the pseudorapidity range |⌘ | < 2.5.1 It

consists of a silicon pixel detector, a silicon microstrip detector and a transition radiation straw-tube

tracker. The innermost pixel layer, the insertable B-layer, was added between Run-1 and Run-2 of

the LHC, at a radius of 33 mm around a new, thinner, beam pipe [26]. In the pseudorapidity region

|⌘ | < 3.2, high granularity lead/liquid-argon (LAr) electromagnetic (EM) sampling calorimeters are

used. A steel/scintillator tile calorimeter provides hadronic calorimetry coverage over |⌘ | < 1.7. The

end-cap and forward regions, spanning 1.5 < |⌘ | < 4.9, are instrumented with LAr calorimetry for

both the EM and hadronic measurements. The muon spectrometer surrounds these calorimeters, and

comprises a system of precision tracking chambers and fast-response detectors for triggering, with

three large toroidal magnets, each consisting of eight coils, providing the magnetic field for the muon

detectors. A two-level trigger system is used to select events [27]. The first-level trigger is implemented

in hardware and uses a subset of the detector information. This is followed by the software-based

high-level trigger, reducing the event rate to about 1 kHz.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector

and the z-axis along the beam direction. The x-axis points toward the centre of the LHC ring, and the y-axis points

upward. Cylindrical coordinates (r, �) are used in the transverse plane, � being the azimuthal angle around the beam pipe.

The pseudorapidity ⌘ is defined in terms of the polar angle ✓ by ⌘ ⌘ � ln[tan(✓/2)].

3

 is Mean Squared Error , “high error events” proxy for “degree of abnormality”ℒ(x, x̂) (x, x̂)
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field provided by a solenoid, has full coverage in � and covers the pseudorapidity range |⌘ | < 2.5.1 It

consists of a silicon pixel detector, a silicon microstrip detector and a transition radiation straw-tube

tracker. The innermost pixel layer, the insertable B-layer, was added between Run-1 and Run-2 of

the LHC, at a radius of 33 mm around a new, thinner, beam pipe [26]. In the pseudorapidity region

|⌘ | < 3.2, high granularity lead/liquid-argon (LAr) electromagnetic (EM) sampling calorimeters are

used. A steel/scintillator tile calorimeter provides hadronic calorimetry coverage over |⌘ | < 1.7. The

end-cap and forward regions, spanning 1.5 < |⌘ | < 4.9, are instrumented with LAr calorimetry for

both the EM and hadronic measurements. The muon spectrometer surrounds these calorimeters, and

comprises a system of precision tracking chambers and fast-response detectors for triggering, with

three large toroidal magnets, each consisting of eight coils, providing the magnetic field for the muon

detectors. A two-level trigger system is used to select events [27]. The first-level trigger is implemented

in hardware and uses a subset of the detector information. This is followed by the software-based

high-level trigger, reducing the event rate to about 1 kHz.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector

and the z-axis along the beam direction. The x-axis points toward the centre of the LHC ring, and the y-axis points

upward. Cylindrical coordinates (r, �) are used in the transverse plane, � being the azimuthal angle around the beam pipe.

The pseudorapidity ⌘ is defined in terms of the polar angle ✓ by ⌘ ⌘ � ln[tan(✓/2)].
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256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

x̂

n × m

๏ Idea applied to tagging jets, 
in order to define a QCD-jet 
veto 

๏ Applied in a BSM search 
(e.g., dijet resonance) could 
highlight new physics signal 

๏ Based on image and physics-
inspired representations of 
jets  

 

Example: Jet autoencoders

12

Farina et al., arXiv:1808.08992
Heimel et al., arXiv:1808.08979

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino
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tagger [13]. It starts from a set of measured 4-vectors sorted by transverse momentum

(kµ,i) =

0

BB@
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1

CCA . (3)

Following the left panel of Fig. 1 we use N = 40 constituents, after checking that an increase
to N = 120 does not make a measurable di↵erence. For jets with fewer constituents we
naturally fill the entries remaining in the soft regime with zeros.

To remove all information from the jet-level kinematics we boost all 4-momenta into the
rest frame of the fat jet. This also improves the performance of our network. Inspired
by recombination jet algorithms we can add linear combinations of these 4-vectors with a
trainable matrix Cij , defining a combination layer

kµ,i
CoLa�! ekµ,j = kµ,i Cij with C =

0

BB@

1 1 0 · · · 0 C1,N+1 · · · C1,M... 0 1
... C2,N+1 · · · C2,M...

...
...

. . . 0
...

...
1 0 0 · · · 1 CN,N+1 · · · CN,M

1

CCA . (4)

We allow for M = 10 trainable linear combinations. These combined 4-vectors carry informa-
tion on the hadronically decaying massive particles. In the original LoLa approach we map
the momenta k̃j onto observable Lorentz scalars and related observables [13]. Because this
mapping is not easily invertible we do not use it for the autoencoder. Instead, we extend the
4-vectors by another component containing the invariant mass,

k̃j =

0

BB@

k̃0,j
k̃1,j
k̃2,j
k̃3,j

1

CCA
LoLa�!

0

BBBBBB@

k̃0,j
k̃1,j
k̃2,j
k̃3,jq
k̃2j

1

CCCCCCA
. (5)

This defines a set of 51 extended 4-vectors, which form the input to our neural network.
Again, we use Keras [35] combined with Tensorflow [36]. Its architecture is shown in
Fig. 3. The layer immediately after the LoLa contains 51 ⇥ (4 + 1) = 255 units. Between
the second layer after LoLa and the last layer, the autoencoder network is symmetric. The
final output consist of 40 4-vector-like objects, which can be compared with the corresponding

Figure 3: Architecture of the 4-vector-based autoencoder network. The 255 input units
correspond to 55 LoLa-vectors with 4+1 entries each. The output only consists of 160 units,
because the extended 4-vectors only carry four independent observables.

6

SciPost Physics Submission

tagger [13]. It starts from a set of measured 4-vectors sorted by transverse momentum

(kµ,i) =

0

BB@

k0,1 k0,2 · · · k0,N
k1,1 k1,2 · · · k1,N
k2,1 k2,2 · · · k2,N
k3,1 k3,2 · · · k3,N

1

CCA . (3)

Following the left panel of Fig. 1 we use N = 40 constituents, after checking that an increase
to N = 120 does not make a measurable di↵erence. For jets with fewer constituents we
naturally fill the entries remaining in the soft regime with zeros.

To remove all information from the jet-level kinematics we boost all 4-momenta into the
rest frame of the fat jet. This also improves the performance of our network. Inspired
by recombination jet algorithms we can add linear combinations of these 4-vectors with a
trainable matrix Cij , defining a combination layer

kµ,i
CoLa�! ekµ,j = kµ,i Cij with C =

0

BB@

1 1 0 · · · 0 C1,N+1 · · · C1,M... 0 1
... C2,N+1 · · · C2,M...

...
...

. . . 0
...

...
1 0 0 · · · 1 CN,N+1 · · · CN,M

1

CCA . (4)

We allow for M = 10 trainable linear combinations. These combined 4-vectors carry informa-
tion on the hadronically decaying massive particles. In the original LoLa approach we map
the momenta k̃j onto observable Lorentz scalars and related observables [13]. Because this
mapping is not easily invertible we do not use it for the autoencoder. Instead, we extend the
4-vectors by another component containing the invariant mass,

k̃j =

0

BB@

k̃0,j
k̃1,j
k̃2,j
k̃3,j

1

CCA
LoLa�!

0

BBBBBB@

k̃0,j
k̃1,j
k̃2,j
k̃3,jq
k̃2j

1

CCCCCCA
. (5)

This defines a set of 51 extended 4-vectors, which form the input to our neural network.
Again, we use Keras [35] combined with Tensorflow [36]. Its architecture is shown in
Fig. 3. The layer immediately after the LoLa contains 51 ⇥ (4 + 1) = 255 units. Between
the second layer after LoLa and the last layer, the autoencoder network is symmetric. The
final output consist of 40 4-vector-like objects, which can be compared with the corresponding

Figure 3: Architecture of the 4-vector-based autoencoder network. The 255 input units
correspond to 55 LoLa-vectors with 4+1 entries each. The output only consists of 160 units,
because the extended 4-vectors only carry four independent observables.

6

Large error for 
abnormal data

MSE(x, x̂)

arXiv:1808.08992 

https://arxiv.org/abs/1808.08992


Outlier detection in analysis
2

Figure 1: Dijet mass distribution of a simulated set of QCD background events injected with
24 fb of the X→YY signal before any cut on the anomaly score (left) and after cutting on the
anomaly score of the TNT algorithm (middle). The distribution after cutting on the TNT
anomaly score in a background only sample is shown on the right. In both cases the back-
ground distribution after the anomaly remains smooth and is well modeled with a parametric
function. Cutting on the TNT score removes a significant amount of background events, result-
ing in a substantially enhanced signal peak in the middle plot.

the background distribution into something non-smooth is also crucial, as the final statistical
analysis involves assuming that the background can be described by a smoothly falling func-
tion. This is shown in the plot on the right. A full explanation of the method used to produce
this signal-sensitive data distribution, as well as four other similar methods, will be described
in the following.

The anomaly detection methods we use are based on three different training paradigms for ML
based anomaly detection: un-supervised, weakly-supervised and semi-supervised learning.

The un-supervised learning attempts to construct a model to identify anomalous jets without
using any labeled examples. The method employed here consists of a Variational Autoencoder
(VAE) trained on a data sample dominated by QCD jets and a quantile regression network
(QR) used to decorrelate the anomaly score with the dijet mass. This method is referred to as
VAE-QR. Autoencoders are a type of neural network which are trained to compress inputs into
a smaller representation and decompress to recover the original inputs. The VAE employed
here takes as input the 100 highest-pT constituents of a jet, with the ordering obtained from
a C/A reclustering of the components. Each particle is represented as a set of three features,
which are the x, y, and z component of its momentum p. The VAE is trained using jets from
the signal-depleted control region. It therefore learns how to perform this compression and
decompression on QCD background jets, but should not be able to perform this task as well
on anomalous jets not present in the training sample. Therefore the difference between the
original and reconstructed data can be used as an effective anomaly score, with higher values
corresponding to more signal-like events. To decorrelate this anomaly score from the variable
of interest (in this case the dijet invariant mass), a quantile regression [13] method is used. The
quantile regression is trained to find the cut on the anomaly score as a function of mjj which
corresponds to a fixed data efficiency in the signal region. A cut on the decorrelated anomaly
score is then applied to both jets in the signal region. A cut corresponding to the 10% most
anomalous data is used.

Three methods based on weak supervision are employed: CWoLa Hunting [14], TNT [15] and
CATHODE [16]. Weakly supervised training [17] is entirely data-driven, and allows one to
train a signal versus background classifier by using labels for groups of data events rather than

E.g CASE 

Before cut on anomaly score After cut on anomaly score

https://cds.cern.ch/record/2892677?ln=en


Variational Autoencoder: Decorrelation from dijet mass

trivial cuts on min(L1,L2)
result in background sculpting

train NN to regress quantiles 
corresponding to fixed efficiencies 

20

leaves background unsculpted

Variational Autoencoder: Decorrelation from dijet mass

trivial cuts on min(L1,L2)
result in background sculpting

train NN to regress quantiles 
corresponding to fixed efficiencies 

20

leaves background unsculpted

Outlier detection in analysis
E.g CASE 

Careful! Cut on score can sculpt spectrum Can fix using quantile regression
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Example for semi-visible jets
F. Eble: Normalized autoencoders R. Seidita: Lund Graph autoencoders
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https://indico.nikhef.nl/event/4875/contributions/20323/attachments/8308/11872/Flash_talk_EuCAIFCon24_EBLE.pdf
https://indico.nikhef.nl/event/4875/contributions/20467/attachments/8294/11858/EBGAEs.pdf


Finding overdensities

More Unsupervised Bump Hunts

•SALAD: Reweight simulation to 
match sidebands, then 
interpolate into the signal 
region and use a second 
classifier to get the likelihood 
ratio 

•CURTAINS: Train an invertible 
neural network conditioned on 
mass to map between 
sidebands 

•FETA: Map simulation to data 
in sidebands, then compare to 
SR data

[Andreassen et al: 2001.05001]

[Raine et al: 2203.09470]

[Golling et al: 2212.11285]

CURTAINS 
[Raine et al: 2203.09470] 

FETA 
[Golling et al: 2212.11285] 



Finding overdensities - CWoLa bumphunt
S enriched sample in data B enriched sample in data
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B

LABEL = SIGNAL
LABEL = BKGE.g CASE 

https://cds.cern.ch/record/2892677?ln=en


Data spectra - no excess

● Reminder: for VAE, only 1 anomaly cut, totally independent of probed mass

● Six different A regions for weakly supervised models (B regions in Backup)

● No significant excess 44

E.g CASE 

https://cds.cern.ch/record/2892677?ln=en
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Weakly  superv ised  -  CWoLa

SIGNAL BACKGROUND

rinv = 1 Z(νν)

0<rinv<1 q/g jet
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Weakly  superv ised  -  CWoLa

rinv = 1

q/g jet

Z(νν)

vs. 
?

0<rinv<1
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Weakly  superv ised  -  CWoLa

SVJ

rinv = 1

q/g jet

vs. 
?

Z( )ℓℓ

"Boosting mono-jet searches with model-agnostic machine learning" Kraemer et al. 

https://inspirehep.net/literature/2072400
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Weakly  superv ised  -  CWoLa

MIXED SAMPLE 1 MIXED SAMPLE 2

LABEL = SIGNAL LABEL = BKG

Any jet classifier

JETS FROM 
MET+JET TOPOLOGY 
→ SIGNAL REGION

JETS FROM 
+JET TOPOLOGY 

→ SIGNAL NOT EXPECTED HERE
ℓℓ



Density estimation
Various methods

ML-based interpolation from sidebands to signal region: 

ANODE: interpolates densities from sidebands to the signal-region & 
constructs likelihood ratio 

CATHODE: samples from the background model in signal region after 
interpolating and estimates likelihood ratio with classifier 

LaCATHODE: Use a in flow to perform CATHODE in latent space 
 
CURTAINS: Train invertible NN conditioned on mass to map between 
sidebands 

ML-based MC reweighting: 

SALAD: Reweight simulation to match sideband, interpolate into the 
signal region and use a second classifier to get the likelihood 

FETA: Map simulation to data in sidebands, then compare to SR data 
 

More Unsupervised Bump Hunts

•SALAD: Reweight simulation to 
match sidebands, then 
interpolate into the signal 
region and use a second 
classifier to get the likelihood 
ratio 

•CURTAINS: Train an invertible 
neural network conditioned on 
mass to map between 
sidebands 

•FETA: Map simulation to data 
in sidebands, then compare to 
SR data

[Andreassen et al: 2001.05001]

[Raine et al: 2203.09470]

[Golling et al: 2212.11285]

CURTAINS 
[Raine et al: 2203.09470] 

FETA 
[Golling et al: 2212.11285] 

https://arxiv.org/abs/2001.04990
https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2210.14924
https://arxiv.org/abs/2203.09470
https://arxiv.org/abs/2001.05001
FETA


Why these methods are good for DM searches

We could cast a 
huge net to catch 
a broad range of 
signals in a single 
search!

CASE 

https://cds.cern.ch/record/2892677?ln=en
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Blabla 
• Dodge 
• Dodge 

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

40 MHz 

Level-1 hardware trigger 
• 0.3% of events left 

High Level Trigger CPU farm 
• 0.0025% of events left

110 kHz 1 kHz 

Offline reconstruction and storage

Do physics with 0.0025%  of collision events, the rest is discarded! 

Detector 
• 100% of events left 



Probing smaller and smaller 
couplings, lower and lower 
masses 
 
Need more statistics! 13 TeV

“Probability” of  
producing “anything”

Mono-jet search limits 95% CL 
0.3 - 736 fb



Anomaly Detection triggers

Energy (GeV)Trigger threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Level-1  re jec ts  >99%  o f  events !  
Is  there  a  smarter  way  to  se lec t?



Anomaly Detection triggers

Energy (GeV)Trigger threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Reconstruction error
AD threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Everything here 
is normal

Everything here 
is abnormal



Anomaly Detection in the CMS Level 1 µGT for Run3! 

Input from Run 3 µGT quantities​: 
•(pT, η, ɸ) hardware integer inputs from: 1 MET, 4 e/γ, 4 µ, and 10 jet objects

pT η φ

x

AXOL1TL  

https://indico.nikhef.nl/event/4875/contributions/20303/attachments/8213/11697/eucaifcon_axol1tl_slides.pdf


pT η φ

Regularize latent space  
to avoid overfittingx x̂

Sampled latent representation 

pT η φ



pT η φ

x

Only deploy encoder, compute degree of abnormality from patent space only 
• Do not need to keep input around for MSE  
• Half network size and latency!



CICADA 

CNN in Level-1 Calorimeter Trigger!


Represent calorimeter tower as image and use CNN auto encoder

https://cds.cern.ch/record/2879816/files/DP2023_086.pdf


E.g Higgs → A(15 GeV) A(15 GeV) → 4b



E.g Higgs → A(15 GeV) A(15 GeV) → 4b

Background falling shape amplified 
● Trigger selection affects the analyses

○ The maximum rate is limited
○ The background is there (see previous slide)
○ The trigger has limited resolution
○ Simple trigger selections (pT cuts, HT cuts, etc…) 

rather than “signature tailored”

=> The signal efficiency is limited at low energy

Background shapes

● Backgrounds:
○ All our main backgrounds (QCD, ttbar, DY, 

W+jets) look the same, a falling distribution 
in any reasonable kinematic variable 

● This is the main reason for the low 
mass performance degradation

We can do both of these efficiently, model-agnostic and datadriven!



Alternative approach: End-to-end DNN search 
• How do we get around defining a signal hypothesis? 
• What is alternate hypothesis to test reference? 

Idea: Assume alternate model n(x|w) can be  
parametrised in terms of reference model n(x|R) 
 

•  Let DNN parametrise alternative model 
n(x | ⃗w ) = n(x |R)ef(x; ⃗w ) Set of real functions

f(x; ⃗w ) = NN

End-to-end-approach: NPLM

https://arxiv.org/pdf/1806.02350.pdf
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identifying instances from unknown categories, such as potential New Physics processes.

Each of these projects is substantial enough to be the subject of a PhD thesis. I propose allocating

one student to each project, under the supervision of the PI and assisted by a Postdoctoral

researcher. In the sections that follow, I will discuss the specifics of both projects.

2. Section b: Methodology

3. WP1: Towards end-to-end smart triggering for HL-LHC and beyond

3.1. The Level-1 hardware trigger
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Figure 3. Left: Diagram of the CMS L1 hardware trigger as foreseen for HL-LHC. The system

is located in a radiation shielded cavern right next to the CMS detector and consists of hundreds

of FPGAs mounted on custom boards. Each subsystem; calorimeters (orange), tracking detectors

(green) and muon chambers (light blue), are first reconstructed locally on hundreds of FPGAs.

This information is then sent forward to a system responsible of correlating the information from

all subdetectors using the Particle Flow algorithm (yellow). Finally, the global trigger receives all

trigger information for the final decision (pink) [8]. Right: An illustration of the final AI-powered

end-to-end reconstruction design proposed in WP1.

The CMS Level-1 trigger is designed in a hierarchical way, illustrated in Figure 3. Information

from each subdetector is first processed and reconstructed locally. For instance for the calorimeter,

x = (x1, x2, . . . , )

̂y?

Some new space

̂y?

̂y?

One model, learn  
neural embedding?
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Figure 3. Left: Diagram of the CMS L1 hardware trigger as foreseen for HL-LHC. The system

is located in a radiation shielded cavern right next to the CMS detector and consists of hundreds

of FPGAs mounted on custom boards. Each subsystem; calorimeters (orange), tracking detectors

(green) and muon chambers (light blue), are first reconstructed locally on hundreds of FPGAs.

This information is then sent forward to a system responsible of correlating the information from

all subdetectors using the Particle Flow algorithm (yellow). Finally, the global trigger receives all

trigger information for the final decision (pink) [8]. Right: An illustration of the final AI-powered

end-to-end reconstruction design proposed in WP1.

The CMS Level-1 trigger is designed in a hierarchical way, illustrated in Figure 3. Information

from each subdetector is first processed and reconstructed locally. For instance for the calorimeter,

x = (x1, x2, . . . , )

̂y?

Some new space

̂y?

̂y?

One model, learn  
neural embedding?

Let’s build this space!
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What if we really try to focus on this space
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Neural embedding

What if we really try to focus on this space



Learning the space



•By looking at data, we can learn a lot 

- Go over input  piece by piece 

- Analyze every aspect  

- Compare every feature 

•Find distinctive style of the input 

- can be done e.g by looking for a deviation

Learning the space
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Minimize



Maximize



Physically motivated augmentations?

• Minimizing and maximizing distances learns a space

Minimizing
maximizing





 No class labels used in training! How do we augment detector data?

Physically motivated augmentations?



 No class labels used in training! How do we augment detector data?

   ttbar 

Physically motivated augmentations?



Higgs Higgs

Baseline Augmented by  
Reshowering 
    

Augmentation

Embedded Space can use any NN to embed 



QM foundation models

→ embedding quantum mechanics into AI algorithm



x = (x1, x2, . . . , )

̂y?

Some new space

̂y?

̂y?

Training 1: Learn neural embedding 
(on a lot of data, for a long time) 

On simulation? On data?



x = (x1, x2, . . . , )

̂y?

Some new space

̂y?

̂y?

Training 2: Fine tune for specific task 
(fast, small dataset, simulation)
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Background

NN Something 
New

Inputs

Training number one: learn embedding
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NN Something 
New

Inputs

Training number two: fine tuning



Foundation model of the Level-1 trigger
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Figure 3. Left: Diagram of the CMS L1 hardware trigger as foreseen for HL-LHC. The system

is located in a radiation shielded cavern right next to the CMS detector and consists of hundreds

of FPGAs mounted on custom boards. Each subsystem; calorimeters (orange), tracking detectors

(green) and muon chambers (light blue), are first reconstructed locally on hundreds of FPGAs.

This information is then sent forward to a system responsible of correlating the information from

all subdetectors using the Particle Flow algorithm (yellow). Finally, the global trigger receives all

trigger information for the final decision (pink) [8]. Right: An illustration of the final AI-powered

end-to-end reconstruction design proposed in WP1.

The CMS Level-1 trigger is designed in a hierarchical way, illustrated in Figure 3. Information

from each subdetector is first processed and reconstructed locally. For instance for the calorimeter,

Foundation  
model

Latent 
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Figure 3. Left: Diagram of the CMS L1 hardware trigger as foreseen for HL-LHC. The system

is located in a radiation shielded cavern right next to the CMS detector and consists of hundreds

of FPGAs mounted on custom boards. Each subsystem; calorimeters (orange), tracking detectors

(green) and muon chambers (light blue), are first reconstructed locally on hundreds of FPGAs.
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all subdetectors using the Particle Flow algorithm (yellow). Finally, the global trigger receives all
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end-to-end reconstruction design proposed in WP1.

The CMS Level-1 trigger is designed in a hierarchical way, illustrated in Figure 3. Information

from each subdetector is first processed and reconstructed locally. For instance for the calorimeter,

Do I really think this will be possible?

Foundation  
model

Latent 

Probably not,  
but at some scale

Foundation  
model

Latent 

Foundation  
model

Latent 
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identifying instances from unknown categories, such as potential New Physics processes.

Each of these projects is substantial enough to be the subject of a PhD thesis. I propose allocating

one student to each project, under the supervision of the PI and assisted by a Postdoctoral

researcher. In the sections that follow, I will discuss the specifics of both projects.

2. Section b: Methodology

3. WP1: Towards end-to-end smart triggering for HL-LHC and beyond

3.1. The Level-1 hardware trigger

12.5 µs

PARTICLE 
FLOW 

(66 FPGAs) 

GLOBAL 
TRIGGER 

(13 FPGAs)

Accept / Reject

MUON CHAMBERS 
(96 FPGAs)

CALORIMETRY 
(370 FPGAs)

End-to-end reconstruction model

Downstream 
Task

Latent representation

Downstream 
Task

Downstream 
Task

Downstream 
Task

CHARGED PARTICLE 
TRACKING 

(174 FPGAs)

Accept / Reject

63 Tb/s

Current HL-LHC design This project

MUON CHAMBERS 
PRE-PROCESSING

CALORIMETER 
PRE-PROCESSING

TRACKING 
PRE-PROCESSING

Figure 3. Left: Diagram of the CMS L1 hardware trigger as foreseen for HL-LHC. The system

is located in a radiation shielded cavern right next to the CMS detector and consists of hundreds

of FPGAs mounted on custom boards. Each subsystem; calorimeters (orange), tracking detectors

(green) and muon chambers (light blue), are first reconstructed locally on hundreds of FPGAs.

This information is then sent forward to a system responsible of correlating the information from

all subdetectors using the Particle Flow algorithm (yellow). Finally, the global trigger receives all

trigger information for the final decision (pink) [8]. Right: An illustration of the final AI-powered

end-to-end reconstruction design proposed in WP1.

The CMS Level-1 trigger is designed in a hierarchical way, illustrated in Figure 3. Information

from each subdetector is first processed and reconstructed locally. For instance for the calorimeter,

Careful software-hardware co-design

Layer 1 
(FPGA 1)

Layer 1 
(FPGA 2)

Layer 2 (FPGA 3)

O(1M) 
parameter 
model on 
1000 FPGAs 
and do 
inference in 
O(1)μs?

Layer 1 
(FPGA 3)

Similar for 
GPT-4, layers 
carefully map 
onto 
hardware

Algean

https://dl.acm.org/doi/full/10.1145/3482854
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The CMS Level-1 trigger is designed in a hierarchical way, illustrated in Figure 3. Information

from each subdetector is first processed and reconstructed locally. For instance for the calorimeter,

Careful software-hardware co-design

Layer 1 
(FPGA 1)

Layer 1 
(FPGA 2)

Layer 2 (FPGA 3)

Designed our 
own protocol to 
make boards talk 
to each other 
fast enough 

(25 Gbs to 
transfer data 
LHC- 
synchronously 
between boards)

Layer 1 
(FPGA 3)
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N-D Space(Graph) NN

Capture  
Physics

We can replace the QCD theorist with a NN 
(And it works better)



12.5 µs

Trigger 
accept/reject

5 µs

Towards end-to-end reconstruction
Classical Particle Flow

5

One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and 
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates 
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show 
the ECAL detector surface (cyan) and the muon stations (blue).

Graph Neural Network



Masked language modelling

Self-supervised pre-training


