<span id="page-0-0"></span>

# Exploring the Impact of Pseudospectra on the Stability of Echo State Networks

Sebastián Basterrech

DTU-Compute, Technical University of Denmark Kongens Lyngby, Denmark

How to Apply ML to Experimental and Theoretical Physics HAMLET-Physics'2024



B

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ 

<span id="page-1-0"></span>

- A Recurrent Neural Network (RNN):
- Concept: a RNN is a dynamical system (fundamental difference with FNNs).
- Discrete-time state-space model:
	- Implicit memorization.
	- High dimensional distributed representation.
- *Nice* properties:
	- Universal approximation property.
	- Biological plausibility.

Graph with circuits:





2/19 S. Basterrech [Exploring the Stability of Echo State Networks](#page-0-0)

<span id="page-2-0"></span>

## Recurrent Neural Networks

Formalization:

———–

• A generic RNN with an input  $\mathbf{u}(t)$ and state  $\mathbf{x}(t)$  for time step t is given by:

$$
\mathbf{x}(t) = T(\mathbf{x}(t-1), \mathbf{u}(t), \boldsymbol{\theta}). \qquad (1) \qquad \mathbf{u}(t-1) \qquad \mathbf{u}(t)
$$

**•** For instance:

$$
\mathbf{x}(t) = \mathbf{W}^{\mathrm{h}}\tanh(\mathbf{x}(t-1)) + \mathbf{W}^{\mathrm{in}}\mathbf{u}(t),
$$
 (2)

 $\mathbf{x}(t-1)$   $\mathbf{x}(t)$ 

 $\hat{\mathbf{y}}(t-1)$ 

with  $W<sup>h</sup>$ : weights with a recurrent structure,  $W<sup>in</sup>$ : weights among inputs and recurrences.

Figure taken from Pascanu et al., How to construct Deep RNNs, ICLR, 2014.

R. Pascanu, T. Mikolov, Y. Bengio, "On the difficulty of training recurrent neural networks," ICML, 2013.



 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$ 

<span id="page-3-0"></span>

#### Examples of RNN topologies



Visualization of several RNN types. Figure taken from Pascanu et al., How to construct Deep RNNs, 2014.



B

 $2990$ 

<span id="page-4-0"></span>

## Obstacles of learning RNNs

Vanishing-exploding gradient

- Vanishing gradient problem (gradient norm tends fast towards zero).
- Exploding gradient problem (gradient norm tends to get very large).



Now exist "good" alternatives to train RNNs: truncated BPTT, Hessian-Free, clipping gradients.



<span id="page-5-0"></span>

Motivations

- Attempt to develop a model that uses the potential for memorization of RNNs without the difficulties in the training process.
- Reservoir Computing (2000s till) now): specific design and training, only the effort is made over the memoryless structure (Herbert Jaeger).
- How to initialize the network and where to train?



An untrained recurrent part called reservoir. A memory-less supervised learning tool called readout.



Herbert Jaegger and Harald Hass, "Harnessing Nonlinearity: Predicting Chaotic Systems and

Saving Energy in Wireless Communication", Science, 2004.

———–

6 / 19 S. Basterrech [Exploring the Stability of Echo State Networks](#page-0-0)

K ロト K 御 ト K 君 ト K 君 ト

<span id="page-6-0"></span>

Other examples of learning simplification

Simplification of the training process in other NNs:

- Extreme Learning Machines: specific FFNN design, only a subset of the weights are trained.
- Shared weights principle: significant in CNNs, common strategy in deep learning, kernels with same parameters, translation invariance, generalization, dimensionality reduction (it is not biologically plausible).

Jordan Ott et al. Learning in the machine: To share or not to share?, Neural Networks, 2020. Guang Huang et al. Extreme learning machines: theory and applications, Neurocomputing, 2006.



B

———–

<span id="page-7-0"></span>

#### Where/how to use it?



Figure taken from: William Gilpin, "Chaos as an interpretable benchmark for forecasting and data-driven modelling", NIPS'2021.



Þ

 $2990$ 

———–

<span id="page-8-0"></span>



- Lorenz system: dynamics of thermo-rotation, thermohaline ocean flow circulation.
- Mackey-Glass (MGS) system: dynamical system used for analyzing bifurcations in physiological applications.



→ 何 ▶ → 日 ▶ → 日

.

4 0 8



Expansion projection (memorization)



 $(N_{\rm u} \ll N_{\rm x})$ 

 $\bullet$  The recurrent part of the network at any time t is given by:

$$
\mathbf{x}(t) = \tanh\left(\mathbf{W}^{\text{in}}\mathbf{u}(t) + \mathbf{W}^{\text{h}}\mathbf{x}(t-1)\right).
$$



## Conceptual separation

- The expansion can enhance the linear separability of the input information.
- The memory-less structure is fast and robust (for instance: linear model).
- Readout structure:



 $\bullet$  Only the  $\mathbf{W}^{\text{out}}$  weights are updated in the training process (gradient descent methods, ridge regression, quasi-Newton, etc.



<span id="page-11-0"></span>

Main global parameters

### Main adjustable parameters of an ESN model:

- Number of neurons: influences in the accuracy (larger networks increases the accuracy).
	- Spectral radius of the weight matrix is a parameter of memorization.



- $\bullet$  Activation function:  $\tanh(\cdot)$ , leaky ratem linear function, Leaky Integrate and Fire (LIF), Radial Basis Function (RBF), etc.
- Other: initialization (Random Matrices Theory) and connectivity design (GT).



 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ 

<span id="page-12-0"></span>

Well identified properties:

- Stability of  $x(t)$  only depends on the weight matrices (Echo State Property (ESP)). (Independent of  $X(0)$ ).
- The stability behaviour:
	- Sufficient condition (max singular value): if the  $\sigma(\mathbf{W}^{\text{h}}) < 1$ , then the ESP is satisfied.
	- *Necessary condition*: it is necessary that  $\rho(\mathbf{W}^h) \leq 1$  in order of holding the ESP.
- Theoretical gap between necessary and sufficient conditions of the Echo State Property.

S. Basterrech. Empirical Analysis of the Necessary and Sufficient Conditions of the Echo State Property. IJCNN'2017.  $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \math$ э

———–

 $QQQ$ 

<span id="page-13-0"></span>



Drawback: control of spectral radius at each iteration of the evolutionary algorithm.

S. Basterrech and G. Rubino. Evolutionary Echo State Network: a neuroevolutionary framework for time series prediction, Applied Soft-Computing, Vol. 144, 2023.



———–

<span id="page-14-0"></span>

- Eigenvalues:  $\Lambda(\mathbf{W}^h) = \{z \in \mathbb{C} : det(zI \mathbf{W}^h) = 0\}$  (points where  $(zI - \mathbf{W}^{h})^{-1}$  is undefined).
- Pseudospectra:  $\Lambda_{\epsilon}(\mathbf{W}^{\text{h}}) = \{z \in \mathbb{C} : ||(zI \mathbf{W}^{\text{h}})^{-1}|| \geq \epsilon^{-1}\}.$



Pseudospectra, alternative definition based in perturbed matrices:

 $\Lambda_{\epsilon}(\mathbf{W}^{\text{h}}) = \{z \in \mathbb{C} : z \in \Lambda(\mathbf{W}^{\text{h}} + E), E \text{ with } ||E|| \leq \epsilon\}.$ 



イロト イ母ト イヨト イヨト

<span id="page-15-0"></span>







<span id="page-16-0"></span>





17 / 19 S. Basterrech [Exploring the Stability of Echo State Networks](#page-0-0)

<span id="page-17-0"></span>

- Experimental analysis of the impact of pseudospectra and spectra in ESNs.
- Focus on ITUC (a region where there are missing theoretical results about stability behavior).
- Advantages of analyzing reservoir perturbations:
	- Control the evolutionary steps in EvoESN.
	- Pseudospectra may provide bounds for  $f(\mathbf{W}^h)$  (recurrent function of the reservoir state).
	- ESN behaves "optimally" at the edge of chaos; pseudospectra may help in analyzing the edge of chaos.
- Matrix perturbation may also be helpful as a regularization factor.



<span id="page-18-0"></span>

## Thank you!

Contacts:

- e-mail: sebbas@dtudk
- ORCID Id: C-9072-2014



 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$