Bayesian optimization of ocean mixed layer parameterizations

<u>Marta Mrozowska</u>, Markus Jochum, James Avery, Ida Stoustrup, Roman Nuterman and Carl-Johannes Johnsen

20/08/2024 HAMLET-Physics, KU

Super yacht Bayesian sinks after encounter with extremely rare water spout (20/8/24, FT)

Tropical SST anomalies can lead to restructuring of the global atmosphere

3

Jochum et al. (2013)

A rare direct observation of a strong mixing event (Hummels et al. 2020). The turbulent diffusivity (3 orders larger than molecular) is shown in panel c.

One of the largest sources of uncertainty is vertical mixing

- Vertical turbulent mixing creates a homogeneous surface layer that, like a skin, exchanges heat and momentum with the atmosphere
- Mixing is difficult to observe, but the mixed layer depth (MLD) is well observed and a key metric for model performance

Foltz et al. (2003)

The Problem

• We want to optimize the **objective function**

 $f\colon \mathbb{R}^n \to \mathbb{R}$

- We don't know anything about the function shape (so-called *black box objective function*)
- The objective function is expensive to evaluate

The Solution: Bayesian Optimization

- Based on a few objective function evaluations, construct a surrogate model of the objective function over the full parameter space
- Using the model of the objective function, decide the next optimal parameter set to evaluate

Agenda

- 1. Gaussian process regression models
- 2. Bayesian optimization with VerOpt
- 3. Optimizing the turbulent kinetic energy closure scheme in Veros

Gaussian process (GP) regression models

X

GP regression generalized

- X: a set of input points
- X*: a set of test points
- Joint distribution:
 - $\begin{bmatrix} \boldsymbol{f} \\ \boldsymbol{f}^* \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} m(\boldsymbol{X}) \\ m(\boldsymbol{X}^*) \end{bmatrix}, \begin{bmatrix} \boldsymbol{K} & \boldsymbol{K}^* \\ \boldsymbol{K}^* & \boldsymbol{K}^{**} \end{bmatrix} \right)$

X

GP regression generalized

- X: a set of input points
- X*: a set of test points
- Conditional distribution:
- $f^*|f, X, X^* \sim \mathcal{N}(K^{*T}K^{-1}f, K^{**} K^{*T}K^{-1}K)$

The kernel

Bayesian Optimization with VerOpt

Step 0: Pick a kernel to define GP prior

Step 0: Pick a kernel to define GP prior

Step 1: Evaluate random initial points

Step 2: Construct an initial GP model

Step 2: Construct an initial GP model

... by minimizing the log marginal likelihood with respect to the kernel hyperparameters.

Interlude: Learning the GP model hyperparameter(s)

Stoustrup (2021)

Step 3: Suggest new points to evaluate by optimizing the UCB acquisition function

Step 4: Evaluate suggested points

Step 4: Construct a GP model using the updated set of evaluated points

Optimizing the TKE closure scheme in Veros

Gaspar et al. (1990)

MLD optimization

Model:ObjectVeros 1°x1°060 vertical layers40°f2.5m surface resolution40°fForced by ECMWF reanalysis20°fwinds (ie observations0assimilated into numerical model0

Setup:

Duration of simulation: 30 years Initial points: 10 Bayes points: 30 Evaluations per step: 2

31

ERA-Interim: Dee et al. (2011); Ifremer MLD: De Boyer Montégut et al. (2022)

Optimization results

The default TKE parameterization lays within the parameter space region where the MLD bias is minimized.

Optimization results

The default TKE parameterization lays within the parameter space region where the MLD bias is minimized.

 $\gamma_{R_f} = \frac{R_f}{1 - R_f}$

(lab experiments suggest 0.05-0.2), le the amount of energy converted To potential energy and not heat)

Why use Bayesian optimization?

- The method is transparent (not a black box)
- Does not rely on gradients
- Relatively few objective function evaluations are needed
- Easy to build with Python packages such as PyTorch
- Has just last week been ported to LUMI to optimize a 9-d parameter space ...
- ... on 1000 GPUs!

Thank you for your attention!

Supported by EU project NextGEMS, the LLM consortium and the Danish Center of Climate Computing at KU