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Super yacht Bayesian sinks after encounter with extremely rare water spout (20/8/24, FT)



Jochum et al. (2013)
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Tropical SST anomalies can lead to restructuring of the global atmosphere



One of the largest 
sources of uncertainty 
is vertical mixing

• Vertical turbulent mixing creates a 

homogeneous surface layer that, like a 

skin, exchanges heat and momentum 

with the atmosphere

• Mixing is difficult to observe, but the 

mixed layer depth (MLD) is well observed 

and a key metric for model performance

Foltz et al. (2003)
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A rare direct observation of a strong mixing

event (Hummels et al. 2020). The turbulent

diffusivity (3 orders larger than molecular) is

shown in panel c.



Veros: Versatile Ocean Simulator       Python/JAX

      MPI for GPUs 

Häfner et al. (2021)
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Fortran on 2000 CPUs or Python/JAX on 16 A100 GPUs

…at a fifth of the energy!

Fortran: the Diesel of climate models!



The Problem

• We want to optimize the objective 

function

𝑓: ℝ𝑛 ⟶ℝ

• We don’t know anything about the 

function shape (so-called black box 

objective function)

• The objective function is expensive to 

evaluate
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The Solution: 
Bayesian 
Optimization

• Based on a few objective function 

evaluations, construct a surrogate 

model of the objective function over 

the full parameter space

• Using the model of the objective 

function, decide the next optimal 

parameter set to evaluate

7



Agenda

1. Gaussian process regression models

2. Bayesian optimization with VerOpt

3. Optimizing the turbulent kinetic energy closure scheme in Veros
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Gaussian process (GP) 
regression models
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𝑥1
𝑥2

∽ 𝒩
𝜇1
𝜇2

,
𝜎11 𝜎12
𝜎21 𝜎22

𝜎12 = 𝜎21 = 0.9
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𝑥1
𝑥2

∽ 𝒩
𝜇1
𝜇2

,
𝜎11 𝜎12
𝜎21 𝜎22

𝜎12 = 𝜎21 = 0.3
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𝑥2
𝑥3

∽ 𝒩
𝜇2
𝜇3

,
𝜎22 𝜎23
𝜎32 𝜎33

𝜮 =

𝒙 ∽ 𝒩(𝟎, 𝜮)

𝜎23 = 𝜎32 ≈ 0.95
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𝑥2
𝑥9

∽ 𝒩
𝜇2
𝜇9

,
𝜎22 𝜎29
𝜎92 𝜎99𝜎23 = 𝜎32 ≈ 0.09

𝜮 =

𝒙 ∽ 𝒩(𝟎, 𝜮)



GP regression 
generalized

• X: a set of input points

• X*: a set of test points

• Joint distribution:
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𝒇
𝒇∗

~𝒩
𝑚(𝑿)
𝑚(𝑿∗)

,
𝑲 𝑲∗

𝑲∗ 𝑲∗∗

𝒇∗

𝑥



GP regression 
generalized

• X: a set of input points

• X*: a set of test points

• Conditional distribution:
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𝒇∗

𝑥
𝒇∗|𝒇, 𝑿, 𝑿∗~𝒩(𝑲∗𝑻𝑲−1𝒇,𝑲∗∗ −𝑲∗𝑻𝑲−1𝑲)



The kernel
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𝑲 =
𝑘(𝒙1, 𝒙1) ⋯ 𝑘(𝒙1, 𝒙𝑛)

⋮ ⋱ ⋮
𝑘(𝒙𝑛, 𝒙1) ⋯ 𝑘(𝒙𝑛, 𝒙𝑛)

𝑘 𝒙, 𝒙′ = exp
1

2𝜎2
𝒙 − 𝒙′ 2



Bayesian Optimization 
with VerOpt
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Step 0: Pick a kernel to define GP prior
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Step 0: Pick a kernel to define GP prior
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Step 1: Evaluate random initial points
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Step 2: Construct an initial GP model
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Step 2: Construct an initial GP model
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…by minimizing the log marginal likelihood with respect to the kernel hyperparameters.



Interlude: Learning the GP model 
hyperparameter(s)
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Stoustrup (2021)

log(MLL) = data fit + simplicity + normalization factor



Step 3: Suggest new points to evaluate by 
optimizing the UCB acquisition function
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Step 4: Evaluate suggested points
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Step 4: Construct a GP model using the 
updated set of evaluated points 
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Optimizing the TKE 
closure scheme in Veros
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Turbulent Kinetic Energy (TKE)

Gaspar et al. (1990)
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𝜕𝐸

𝜕𝑡
=

𝜕

𝜕𝑧
𝜅𝑒
𝜕𝐸

𝜕𝑧
− 𝑐𝜖

𝐸
3
2

𝐿
− 𝑁2𝜅ℎ + 𝜅𝑚

𝜕𝑢ℎ
𝜕𝑧

2

Free parameters:

−𝑇′𝑤′ = 𝜅ℎ
𝜕𝑇

𝜕𝑧
−𝑢ℎ

′
𝑤′ = 𝜅𝑚

𝜕𝑢ℎ
𝜕𝑧

Turbulent fluxes:

Prognostic TKE equation:

Parameterization of eddy 

diffusivities:
𝜅ℎ = 𝑐𝑘𝐿 𝐸 𝜅𝑒 = 𝛼𝑡𝑘𝑒𝜅𝑚 𝜅ℎ =

𝜅𝑚
𝑃𝑟

𝑐𝑘 ∈ [0,1] 𝑐𝜖 ∈ [0,1] 𝛼𝑡𝑘𝑒

TKE diffusion TKE dissipation Buoyancy flux Shear production

Default values: 𝑐𝑘 = 0.1, 𝑐𝜖 = 0.7, 𝛼𝑡𝑘𝑒 = 30



MLD optimization
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Model:

Veros 1ºx1º

60 vertical layers

2.5m surface resolution

Forced by ECMWF reanalysis 

winds (ie observations 

assimilated into numerical model

Objective function: −
1

𝑁𝑀
෍

𝑖,𝑗=0,0

𝑁,𝑀
𝑀𝐿𝐷𝑖,𝑗

𝑠𝑖𝑚 −𝑀𝐿𝐷𝑖,𝑗
𝑜𝑏𝑠

𝑀𝐿𝐷𝑖,𝑗
𝑜𝑏𝑠

2

ERA-Interim: Dee et al. (2011); Ifremer MLD: De Boyer Montégut et al. (2022)

Setup:

Duration of simulation: 30 years

Initial points: 10

Bayes points: 30

Evaluations per step: 2



Optimization results
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The default TKE parameterization lays within the parameter space 

region where the MLD bias is minimized.



Optimization results
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The default TKE parameterization lays within the parameter space 

region where the MLD bias is minimized.

𝛾𝑅𝑓 =
𝑅𝑓

1 − 𝑅𝑓

(lab experiments suggest 0.05-0.2),

Ie the amount of energy converted

To potential energy and not heat)



Why use Bayesian optimization?

• The method is transparent (not a black box)

• Does not rely on  gradients

• Relatively few objective function evaluations are needed

• Easy to build with Python packages such as PyTorch

• Has just last week been ported to LUMI to optimize a 9-d parameter space …

• … on 1000 GPUs!
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Thank you for your attention!
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