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The STFC Hartree Centre

High-performance computing, data analytics
 and artificial intelligence research facility located at the Sci-
Tech Daresbury research and innovation campus



AI activities at the Hartree Centre



How to design 

the fusion power plant of the future?

Iterative cycle

design – build – improve

is unfeasible

Can we get a full in silico replica

of a nuclear fusion reactor?

The Fusion Computing Lab
A collaboration with digiLab and the UKAEA



Fusion 
Computing 

Lab

4-year collaborative agreement, 
aiming to continue beyond 2027

Around 60 individuals (mostly researchers + operational 
support, communications, etc.),

Evenly split between STFC and UKAEA

Secondments of UKAEA researchers at Hartree

Aim: to explore and implement advanced computing 
methods in nuclear fusion research, and workflows 
towards the development of a reactor digital twin

Agreements also with academic institutions (incl Univ. 
Manchester and University College London), US 
National Labs (ESCAPE Project), and SMEs



WS-1: 

Digital Thread co-

integration

bringing it all together to 

build a digital twin

WS-2:

Fast and Actionable 

Emulators

using AI to replace expensive 

simulations with accurate 
surrogate models, 

and to optimize the 

simulations to be run

WS-3: 

Plasma Real-Time Control

AI-powered algorithms 

to keep the plasma confined 

and safeguard the 
surrounding structures

WS-4:

Platform Architecture 

Exploitation

high-performance computing 

SW and HW solutions

WS-5: 

Uncertainty Quantification

guarantee safe operations 

and understand sensitivity 

to design changes

WS-0: 

Project Coordination, 

Training, 

Communication

Five 

“Work Streams”

Fusion Computing Lab



Plasma shape control

How do we keep the plasma where we want it to be?

Divertor Detachment

How do we cool the exhausts so not to damage the tokamak?

Core Turbulence and Gyrokinetics

How much energy is transported inside the 

“burning” plasma?

Disruptions

Can we predict/avoid/mitigate plasma instabilities?  

Scrape-off Layer

How much energy is transported away from the 

“burning” plasma?

AI for Magnetic Confinement Fusion



Surrogate Modeling



Plasma Shape Control
example MAST-U equilibrium

Real time magnetic control of 2D shape of plasma 

in the poloidal plane. 

High frequency control of actuator coil currents 

magnetically coupled to the plasma.

Generally tackled using linear control techniques.

Hartree AI researchers: 

Nicola Amorisco, Adriano Agnello, 

George Holt, Abbie Keats,

 Alasdair Ross, Aran Garrod

UKAEA Collaborators: 

Stan Pamela, James Buchanan, 

Graham McArdle, Charlie Vincent, 

Kamran Pentland, etc.



(Ohmic) Plasma Shape Control MAST-U equilibrium

X-point

Strike 

point

Inner & 

outer 

midplane 

points

The plasma is confined by currents in the coils and in the plasma itself.

The "solenoid sweep" and other drives are preprogrammed to keep 

the plasma current up, but they can also alter its shape.

Probes around the tokamak give us noisy and incomplete information 

on the plasma. Is it departing from what we designed? And, how do we 

bring it back where it should be?



‘Classical’ Plasma Shape Control

Real-time 

reconstruction

Observed state റ𝑦𝑜(𝑡) 

Desired control 

targets റ𝑦𝑟(𝑡)

Design sweep റ𝐼0(𝑡)

റ𝐼𝑐,𝑟 = റ𝐼0 𝑡 +  ി𝑆𝑣𝑐 ( റ𝑦𝑟 𝑡 − റ𝑦𝑜(𝑡))

𝑉𝑐,𝑟 = 𝑃𝐼𝐷( റ𝐼𝑐,𝑟 − റ𝐼𝑐,𝑜)

Coil currents റ𝐼𝑐,𝑜(𝑡)

Probe measurements

𝑉𝑐,𝑜𝑢𝑡 = Safety(𝑉𝑐,𝑟 , റ𝐼𝑐,𝑟)

𝑉𝑐,𝑝𝑜𝑤𝑒𝑟 = Supplies(𝑉𝑐,𝑜𝑢𝑡)

Shape matrix

with the Shape matrix pre-calculated along the desired scenario.  



AI-supported Plasma Shape Control
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Wall/Passive currents are 

neglected

Dynamic

Wall/Passive currents are 

NOT neglected

Reinforcement 

Learning 

Current 

framework

Shape matrix

 emulation

Agnello et al. (2024), Phys.Plasmas, doi:10.1063/5.0187822

Amorisco et al. (2023), ICDDPS-4 and IAEA-FEC23

- GS surrogate: shape target emulator 

- Accurate Shape matrices at any point in the experiment

MAST-U equilibrium

X-point

Strike 

point

Inner & 

outer 

midplane 

points

- Ensemble averages

https://ui.adsabs.harvard.edu/link_gateway/2024PhPl...31d3901A/doi:10.1063/5.0187822
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FreeGSNKE: FreeGS Newton-Krylov Evolutive

Fully Python non-linear solver for the evolutive 

equilibrium problem. Extends Ben Dudson’s FreeGS.

1. Static GS solver: 

• forward-solve of Grad-Shafranov eq.,

Newton-Krylov method.

2. Linear dynamics:

• Automated normal mode decomposition of 
passive structure model

• Linear stability analysis, linear growth-rate of 

vertical instability

3. Non-linear dynamics:

• NK-based solver of fully non-linear problem

• Prescribed time evolving profiles, parameterized 
by 𝑝𝑎(t) or 𝛽𝑝(t), evolving 𝛼𝑚 𝑡 , 𝛼𝑛 𝑡

nonlinear

linearized MAST-U 

VDE

Amorisco et al. (2024), Phys.Plasmas,

doi:10.1063/5.0188467

FreeGSNKE-RL library for RL experiments and training.

https://ui.adsabs.harvard.edu/link_gateway/2024PhPl...31d2517A/doi:10.1063/5.0188467


Divertor Detachment

Background

• Tokamak plasma exhaust is extremely energetic

• There are no materials that would withstand unmitigated 

deposition of the exhaust

• Advanced divertor configurations are being designed and 

tested to reduce the energy load on exhaust components

Problems we are addressing

• Scrape-off layer and divertor simulation is computationally 

expensive but can be massively sped up with machine 

learning

• Current control policies are based on linear theory but can 

potentially be improved with nonlinear policy development

Led by Hartree Centre and UKAEA, contributions from 

Lawrence Livermore National Laboratory and University of 

York
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Control coils

Quarter cross-section of 

the MAST-U tokamak

G. K. Holt, et al, ICDDPS-4 (2023)

G. K. Holt, et al., IAEA-FEC (2023)
A. Keats, et al., ICDDPS-5 (2024)
G. K. Holt, et al., under review (2024)

Hartree: George Holt, Abbie Keats

Collaborators: Stan Pamela1, Mike 
Kryjak2, Ben Dudson3, Lorenzo Zanisi1
1UKAEA, 2Univ. York, 3LLNL



Divertor Detachment

Data set creation

Automation → scaling → HPC exploitation

Automation

• Simulation input generation
• Convergence testing

• Diagnostic cleanup

Scaling

• Trade-off between efficiency and wall time is 
problem dependent

HPC exploitation

• Search space initialisation

• Simulation batching
• Array jobs

Supercomputer with 

𝑁 nodes

Pool of 𝑆 simulations,

𝐽 = 𝑆/𝑘 array jobs

Array job 𝐽

Array job 𝐽 − 1
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Top: UMAP target visualisation. Bottom-left: job placement 

diagram. Bottom-right: search space initialization schematic.

G. K. Holt, et al, ICDDPS-4 (2023)

G. K. Holt, et al., IAEA-FEC (2023)
A. Keats, et al., ICDDPS-5 (2024)
G. K. Holt, et al., under review (2024)



Divertor Detachment
Neural network training, results and interpretability

Rigorous hyperparameter optimisation

• Tree-structured Parzen estimator for trial selection

• Asynchronous hyperband scheduler for culling
• Automated experiments, run to convergence

Model performance

• 𝑅2:  0.98
• Time-to-solution reduced from ~1 day to ~1 ms

SHAP analysis

• Shapley additive explanations for global and local 

model interpretability

Top-left: hyperparameter tuning 

experiment progress. Top-right: 
trained model calibration plot. 
Right: Local SHAP interpretations. 

Bottom: Global SHAP 
interpretations.

G. K. Holt, et al, ICDDPS-4 (2023)

G. K. Holt, et al., IAEA-FEC (2023)
A. Keats, et al., ICDDPS-5 (2024)
G. K. Holt, et al., under review (2024)



Accelerating Gyrokinetic simulations

Model: Difficulty: Caveats:

Fluid easy                     No info on 

f(x,v)          

(quasi)linear 

gyrokinetic

Hard, but doable          Can miss important physics 

Nonlinear 

gyrokinetic

Very 

hard, expensive

Provides f(x,v) info           

But: how do we sample the 

parameter space fast and 

efficiently?              

Transport in a plasma is governed by the phase space distribution f(x,v) of particles

Focus on slab ITG turbulence.

(Candy & Waltz, GA 2003)



Accelerating Gyrokinetic simulations

Closures for nonlinear slab ITG turbulence: 

higher-order velocity moments as simple functions of lower-order moments.

Simpler than full-geometry problem, but gives good insight.

It also shows some behaviour that was not caught in “paper and pen” linear-Landau closures.

Hartree: Adriano Agnello

Collaborators: JT Parker1,2, James 
Buchanan1, William Hornsby1, 
1,Irish Centre for HE Computing, 2UKAEA

https://github.com/JosephThomasParker/SpectroGK



QuaLiKiz

Surrogate

Surrogate 

uncertainty

Simulation 

database
JET

JET experimental 15D historical data

Fixed design space

Quasi-linear simulations

Active Learning on JET

Zanisi et al. (2024)



QuaLiKiz

Surrogate

Surrogate 

uncertainty

Simulation 

database

Two Deep Ensembles  
(Lakshminarayanan et al. 2017)

• Classification
o Critical gradient estimation

o Prevents sampling in stable region

• Regression

o ITG turbulence flux estimation

Zanisi et al. 2024

Active Deep Ensembles for Plasma Turbulence



Zanisi et al. (2024) Nuclear Fusion

doi:10.1088/1741-4326/ad240d

Siddle et al. in prep.

10x less 

data

4x less 

data

Classifier performance

Regressor performance 

(ion particle flux)

Number of training examples

R
2

 

F
1

ADEPT Results on JET

Number of training examples

https://ui.adsabs.harvard.edu/link_gateway/2024NucFu..64c6022Z/doi:10.1088/1741-4326/ad240d


Castagna et al. (2024), doi:10.1063/5.0189945 Physics of Plasmas

Speedup ~10x

 and complexity NlogN 

vs N2 of BOUT++ 

Using Generative Adversarial Networks as 

deconvolution operator for Large Eddy Simulations

StyleGAN for SOL Turbulence



Unsupervised 
Disruption prediction

Predict impending plasma disruptions based on plant 

diagnostics in MAST database

• Unsupervised approach vs literature work based 

on manually labelled data

• Uncertainty-aware prediction for robust 

inference and advance warnings for mitigation 

• Unsupervised pre-training based on        

𝛽-Variational Auto-Encoders

• Training tailored to ensure robustness 

to missing data

• RNN baseline prediction and 

customised transformers underway

RNN

Hartree: N. Amorisco, 

Wonny Lee
UKAEA: Stan Pamela



AI for magnetic confinement fusion

Detachment 

control

• Emulators of 

Hermes-3 & SD1D

• Efficiency with active 

learning

• Interpretability with 

SHAP

• Reinforcement 

learning for control

Gyrokinetics

• Nonlinear slab 

gyrokinetic 

simulations of ITG 

turbulence

• Data-driven closures 

discovery

• Efficiency with active 

learning

SOL 

Turbulence

• StyleGAN as 

deconvolution 

operator for large 

eddy simulations

• Integrated into 

BOUT++

Disruption 

prediction

Plasma shape 

control

• Evolutive Grad-

Shafranov solver

• Shape matrix 

emulation

• Reinforcement 

learning for control

• GPU support with 

JAX

MAST 8203

---  Past plasma current

--- Future plasma current

--- Prediction with uncertainty

• Unsupervised 

approach eliminates 

need for manual 

labeling

• Stack of VAEs for 

pre-training

• Uncertainty-aware 

prediction
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