Enhancing Neutron Scattering Experimentation

A Data Science and Machine Learning Approach to Predict Background Scattering

Petroula Karacosta X-ray and Neutron Scattering Group, NBI

EUROPEAN

SPALLATION SOURCE

ESS

McStas

Master's Thesis:

Using McStas Union components to simulate a magnet sample environment & predicting background with machine learning

Kim Lefmann Professor NBI

Mads Bertelsen Computational Neutron Scattering Scientist ESS, DMSC

What's Neutron Scattering?

The ID of a Neutron

Spin	Charge	Magnetic Moment	Particle	Wave
1/2	0	-1.9130 eħ/2m _p	Yes	Yes

Creating synthetic data

6

Simulating the Sample Environment

Monte Carlo Neutron Ray-Tracing Simulation Package

Simulating the Sample Environment

What problem do we need to solve?

Background Scattering

Background Scattering

Example: La_{2-x}Sr_xCuO₄, λ=1.47 Å

Produced over 24000 sets of synthetic data based on 7 parameters:

- Wavelength: λ , λ d
- Beam divergence
- Sample dimension
- Sample Detector distance
- Sample material

- Wavelength: λ , λ d
- Beam divergence
- Sample height/radius
- Sample Detector distance
- Sample material

- Wavelength: λ , λ d
- Beam divergence
- Sample height/radius
- Sample Detector distance
- Sample material

Sample materials

What's the best way to predict background?

Starting with a Random Forest:

- 1. Features: High dimensional or reduced?
- 2. Information Complexity trade-off
- 3. Background information bias exploration

1. Dimensionality Reduction

High dimensionality: 807 features

- 7 Instrument parameters
- 800 intensity/angle values

PCA: 81 features

- 89.96% of feature reduction
- 94.45% of information preserved

1. Dimensionality Reduction

High dimensionality: 807 features

- 7 Instrument parameters
- 800 intensity/angle values

PCA: 81 features

- 89.96% of feature reduction
- 94.45% of information preserved

2. Information vs Complexity in target values

Normalised Intensity within 10° - 170°

5 bins per degree: 800 targets MAE: 0.161

1 bin per degree: 160 targets MAE: 0.111

2. Information vs Complexity in target values

Normalised Intensity within 10° - 170°

5 bins per degree: 800 targets MAE: 0.161

1 bin per degree: 160 targets MAE: 0.111

3. Bias Exploration: Measurements of *pure background*

0% Background Measurements MAE: 0.105

50% Background Measurements MAE: 0.129

100% Background Measurements MAE: 0.121

3. Bias Exploration: Measurements of *pure background*

0% Background Measurements MAE: 0.105

50% Background Measurements MAE: 0.129

100% Background Measurements MAE: 0.121

3. Bias Exploration: Measurements of *pure background*

0% Background Measurements MAE: 0.105

50% Background Measurements MAE: 0.129

100% Background Measurements MAE: 0.121

First results

Random Forest vs Gradient Boost

Still a work in progress...

- Improve data: Simulation quality and better representation of materials
- Restructuring the database under the F.A.I.R. framework
- Try Neural Networks open to suggestions
- Generalise: Material-agnostic model
- Synthetic + Real data hybrid

Nonetheless...

First step in background prediction in neutron scattering data

Thank you!

Questions?

