DISCOVERING INTERPRETABLE PHYSICAL MODELS USING SR AND DEC

Simone Manti, Alessandro Lucantonio Department of Mechanical and Production Engineering, Aarhus University

HAMLET 2024 | SIMONE MANT 21 AUGUST 2024 | PHD STUDENT * * * * * * *

INTRODUCTION

Problem: use ML to discover new Physics

Why? Still unable to accurately model many physical phenomena (e.g. biological systems)

How? Many directions:

1. Black-box methods (e.g. Neural Networks).

Pros: many developed and tested models, more solid theory.

Cons: difficult to interpret, requires large datasets.

2. Symbolic methods (e.g. Symbolic Regression models).

Pros: interpretability + less data required (more constrained)

Cons: algebraic equations (majority)

OUR CONTRIBUTION

This work: Develop a new symbolic method combining Symbolic Regression and Discrete Exterior Calculus to discover new physical models starting from data.

- General-purpose method designed for field problems
- The output of the method is an equation -> easy to interpret
- Working to extend it to face real-world and open problems
- Two open-source libraries: *dctkit* (to manage discrete mathematical tools) and *alpine* (to implement the learning strategy)

dctkit

alpine

STATE-OF-THE-ART COMPARISON

		Ours	PySINDy [1]	EQL[2]	Eureqa [3]	DSR [4]	Al Feynman [5]	PySR [6]
Field Problems		\checkmark	\checkmark	×	×	×	×	×
	Domain source	\checkmark	×	×	×	×	×	×
	Stationary/ Non- stationary	√/√	×/√	x/x	x/x	x/x	x/x	x/x
	Variational/Non- variational	√ / √	×/√	x/x	x/x	x/x	x/x	x/x
Dynamical Systems		×	\checkmark	√	\checkmark	×	×	×
Algebraic Equations		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

[1] Kaptanoglu A A et al., PySINDy: A comprehensive Python package for robust sparse system identification, Journal of Open Source Software

[2] Sahoo S, Lampert C and Martius G, Learning equations for extrapolation and control, Int. Conf. on Machine Learning

[3] Schmidt M and Lipson H, Distilling free-form natural laws from experimental data, Science

[4] Petersen B K, Landajuela M, Mundhenk T N, Santiago C P, Kim S K and Kim J T, Deep symbolic regression: recovering mathematical expressions from data via risk-seeking policy gradients (arXiv:1912.04871)

[5] Udrescu S-M and Tegmark M, AI Feynman: a physics-inspired method for symbolic regression, Sci. Adv

[6] Cranmer M, Interpretable machine learning for science with PySR and SymbolicRegression.jl (arXiv:2305.01582)

HAMLET 2024 | SIMONE MANTI 21 AUGUST 2024 | PHD STUDENT

DISCRETE EXTERIOR CALCULUS

- Why?
 - Discrete theory: no need for discretization schemes
 - Discrete geometric representation: suitable for field problems
 - Concise + effective set of operators: reduced search space
- What?
 - Discrete version of Exterior Calculus (differential forms in a manifold)
 - manifold <-> simplicial complex
 - field <-> form <-> cochain
 - grad, div, lap <-> coboundary (d) and hodge star (\star)

Figure from Desbrun et al., Discrete Differential forms for Computational Modeling

Figure from K.Crane, Discrete Differential Geometry: An applied introduction

SYMBOLIC REGRESSION

- Why?
 - Generate and manipulate candidate equations describing a given physical system;
 - interpretability;
 - use small dataset for training, validation and test.
- What?
 - Symbolic Regression -> find equations given data;
 - Genetic Programming -> evolutionary strategy that explores the space updating an initial population through genetic operations. The goal is to maximise a proper fitness function.

THE METHOD

MECHANICAL AND PRODUCTION

- 1. Individual: potential energy or residual
- Pure GP does not work -> we cannot sum e.g. a cochain with a scalar.
 Sol: Strongly-Typed Genetic Programming -> type consistent trees
- 3. Dimensionless variables -> every generated expression is physically meaningful
- 4. Each individual is minimized (for the residual-> its norm) according to initial and boundary conditions. Then, we compare the solution with the true data, maximizing

$$F(I) = -(\alpha MSE(I) + \eta R(I))$$
fixed scaling factor (problem dependent)
$$Regularization$$
hyperparameter
$$Regularization$$

$$Regularization$$

RESULTS - PRELIMINARY INFO

- 3 different benchmarks in variational form: *Poisson, Elastica, Linear Elasticity* equations
- Data are split in training, validation and test (double hold-out).
- 50 final model discovery runs to compute recovery rate or MSE mean \pm std

Training fitness

OF MECHANICAL AND PRODUCTION

ENGINEERING

The best individual of this generation is. square (inneous, addres($n + o(r) = 1.9$, detricobe($a(1))$))	
22 2000 8.9221 5696.32 6214.85 1642.68 4 8.7385 37 4.9794	
The best individual of this generation is: SquareF(InnP0(u, AddCP0(MFP0(f, -1.), delP1(cobP0(u)))))	
23 2000 8.9221 5392.19 6214.75 2019.23 4 9.258 39 6.0094	
The best individual of this generation is: SquareF(InnP0(u, AddCP0(MFP0(f, -1.), delP1(cobP0(u)))))	
24 2000 8.7275 4895.1 6214.65 2438.83 4 10.587 44 7.1726	
The best individual of this generation is: SquareF(InnP0(SubCP0(delP1(cobP0(u)), f), u))	
25200 🔽 8.7275 4202.49 6214.55 2774.8 4 12.641 44 8.0445	
The best individual of this generation is: SquareF(InnP0(SubCP0(delP1(cobP0(u)), f), u))	
26 2000 3.1662 3048.98 6214.35 2920.19 4 16.401 45 7.4618	
The best individual of this generation is: MulF(SquareF(InnP0(u, AddCP0(MFP0(f, -1.), delP1(cobP0(u))))), Div(AddF(InnP0(u,	u), 1/2),
ExpF(InvF(-1.)))	
27 2000 3.1662 1367.86 6113.19 2265.78 6 18.6435 45 6.4761	
The best individual of this generation is: MulF(SquareF(InnP0(u, AddCP0(MFP0(f, -1.), delP1(cobP0(u))))), Div(AddF(InnP0(u,	u), 1/2),
ExpF(InvF(-1.)))	
28 2000 3.1662 81.7594 428.885 86.7168 6 19.1415 37 5.5249	
The best individual of this generation is: MulF(SquareF(InnP0(u, AddCP0(MFP0(f, -1.), delP1(cobP0(u))))), Div(AddF(InnP0(u,	u), 1/2),
ExpF(InvF(-1.)))	
29 2000 3.1662 31.2686 69.5186 14.6846 6 19.576 43 5.7375	
The best individual of this generation is: MulF(SquareF(InnP0(u, AddCP0(MFP0(f, -1.), delP1(cobP0(u))))), Div(AddF(InnP0(u,	u), 1/2),
ExpF(InvF(-1.)))	
30 2000 3.1662 22.3536 39.7892 6.3748 6 20.009 37 6.1533	
The best individual of this generation is: MulF(SquareF(InnP0(u, AddCP0(MFP0(f, -1.), delP1(cobP0(u))))), Div(AddF(InnP0(u,	u), 1/2),
ExpF(InvF(-1.)))	
31 2000 2.53 19.1169 21.7469 2.9472 6 19.8705 37 6.5532	
The best individual of this generation is: MulF(SquareF(InnP0(CMulP0(u, u), SubCP0(delP1(cobP0(u)), f))), SquareF(1/2))	
32 2000 2.5052 18.277 20.487 3.2858 6 18.209 37 6.2063	
The best individual of this generation is: MulF(SquareF(InnP0(u, SubCP0(f, delP1(cobP0(u))))), Div(InnP0(u, u), ExpF(SquareF	(SubF(1/2
, -1.)))))	
33 2000 2.3595 17.2293 20.0099 3.8053 6 16.563 33 5.9757	
The best individual of this generation is: MulF(SquareF(InnP0(u, SubCP0(f, delP1(cobP0(u))))), Div(InnP0(u, u), ExpF(SquareF	(SqrtF(1/
2)))))	
34 2000 2.3595 15.9152 19.4503 4.1998 6 16.639 38 6.208	
The best individual of this generation is: MulF(SquareF(InnP0(u, SubCP0(f, delP1(cobP0(u))))), Div(InnP0(u, u), ExpF(SquareF	(SqrtF(1/
2)))))	
35 2000 2.3595 14.3445 18.9282 4.3219 6 17.1675 38 6.3412	
The best individual of this generation is: MulF(SquareF(InnP0(u, SubCP0(f, delP1(cobP0(u))))), Div(InnP0(u, u), ExpF(SquareF	(SqrtF(1/
36 2000 2.1446 12.1054 18.4745 3.7467 8 19.248 38 5.569	

Best individual so far

HAMLET 2024 SIMONE MANTI 21 AUGUST 2024 PHD STUDENT

A look inside *alpine*

RESULTS – 2D POISSON

Dirichlet energy using DEC operators:

$$\mathcal{E}_{\mathbf{p}}(u) := \frac{1}{2} \langle du, du \rangle - \langle u, f \rangle = \frac{1}{2} \langle \delta du, u \rangle - \langle u, f \rangle.$$

 Full dataset (training + validation + test): 12 (u,f) pairs without noise

- Dirichlet BCs
- Recovery rate: 66% (best hyperparameters)

#	Energy	Training Fit.	Test Fit.	Test MSE
1	$\langle u, \delta(d(u/2) - f) \rangle$	0.9	0.9	$9.8 \cdot 10^{-10}$
2	$\langle u, \delta(du) - 2f \rangle$	0.9	0.9	$9.8\cdot10^{-10}$
3	$\langle \star (\star u), \delta(du) - 2f \rangle$	1.1	1.1	$9.8 \cdot 10^{-10}$
4	$\langle du, du \rangle - \langle f, 2u \rangle$	1.1	1.1	$9.8 \cdot 10^{-10}$

RESULTS – EULER'S ELASTICA

$$\mathcal{E}_{\rm el}(u) := \frac{1}{2} \langle \mathbb{1}_{\rm int} \odot \star d^{\star} u, \mathbb{1}_{\rm int} \odot \star d^{\star} u \rangle - \langle f \mathbb{1}, \sin u \rangle$$

- Task: learn the correct energy and the best related B
- f = PL²/B, where P is the vertical component of the load and B is the *bending stiffness* of the rod
- Full dataset: 10 pairs (u, PL²) perturbed with uniform noise
- To autotune the constant B we solve at each time

$$\min_{f \ge 0} \quad ||u_f - \bar{u}||^2 \qquad \text{s.t. } u_f \in \operatorname*{arg\,min}_{u \,:\, u(0) = 0} \mathcal{E}(u, f)$$

#	Energy	Training Fit.	Test Fit.	Test MSE	В
1	$\langle \star \mathbb{1}_{\text{int}}, (d^{\star}u)^2 \rangle - \langle \sin u, f \mathbb{1} \rangle$	0.196	0.1939	0.0084	$37.0312~\mathrm{Nm^2}$
2	$\langle \arccos(-1)\sin u + \delta^{\star}(\sin(\sin(d^{\star}u))), u - f\mathbb{1} \rangle$	0.2123	0.2247	0.0075	$7.1779 \ { m Nm^2}$
3	$\langle u - f \mathbb{1}, \delta^{\star}(\sin(\sin(d^{\star}u))) + 1/\exp(-1)\sin u \rangle$	0.214	0.2168	0.0067	$6.8262 \ \mathrm{Nm^2}$
4	$\langle \star \mathbb{1}_{\text{int}}, (d^{\star}u)^2 \rangle - \langle f \mathbb{1}, \sin u \rangle + 1/2$	0.216	0.2139	0.0084	$37.0312 \ {\rm Nm^2}$

OTOS UNIT IN AROTH

RESULTS – 2D LINEAR ELASTICITY

$$\mathcal{E}_{LE}(\boldsymbol{F}) := \frac{1}{2} \langle \boldsymbol{F} + \boldsymbol{F}^T - 2\boldsymbol{I} + \frac{\lambda_{-}}{\mu_{-}} \operatorname{tr} \left(\frac{1}{2} (\boldsymbol{F} + \boldsymbol{F}^T) - \boldsymbol{I} \right) \boldsymbol{I}, \frac{1}{2} (\boldsymbol{F} + \boldsymbol{F}^T) - \boldsymbol{I} \rangle$$

- Task: learn the energy as a function of F
- Full dataset: 20 node coordinates in the deformed configuration (homogeneous deformations)
- Implemented an internal filter (during training) for frame indifference
- Recovery rate: 92% with the best hyperparameter set
- Some of the learned energies are equivalent to the correct one only if **F** is constant

#	Energy	Training MSE	Test MSE
1	$\langle \boldsymbol{I} - \boldsymbol{F}^T, \boldsymbol{I} \rangle^2 - 0.1 (\langle \boldsymbol{I} - \boldsymbol{F}^T, \operatorname{sym}(\boldsymbol{F}) - \boldsymbol{I} \rangle + \langle \boldsymbol{I} - \operatorname{sym}(\boldsymbol{F}), \operatorname{sym}(\boldsymbol{F}) - \boldsymbol{I} \rangle)$	0	$1.1672 \cdot 10^{-16}$
2	$\langle -0.5\boldsymbol{I} + 0.5 \operatorname{sym}(\boldsymbol{F}), \operatorname{sym}(\boldsymbol{F}) - \boldsymbol{I} + (\operatorname{tr}(\boldsymbol{F}) - \operatorname{tr}(\boldsymbol{I}))(2\operatorname{tr}(\boldsymbol{I})\boldsymbol{I} + \boldsymbol{I}) \rangle$	0	$2.0785 \cdot 10^{-16}$
3	$\langle \boldsymbol{I} - \boldsymbol{F}^T, \boldsymbol{I} - \operatorname{sym}(\boldsymbol{F}) + 5 \langle \boldsymbol{I} - \boldsymbol{F}, \boldsymbol{I} angle \boldsymbol{I} angle$	0	$3.7309 \cdot 10^{-16}$
4	$\langle \operatorname{sym}(F) - I, \operatorname{sym}(F) - I \rangle + 5 \langle I - F, I \rangle^2$	0	$8.7033 \cdot 10^{-16}$

SIMONE MANT PHD STUDENT

Thanks for your attention!

Scan for the full paper

HAMLET 2024 | SIMONE MANTI 21 AUGUST 2024 | PHD STUDENT

PRIMITIVES

			Problem		
Primitive names	Input types	Return type	Poisson	Elastica	Linearelasticity
Add, Sub, MulF, Div	(float, float)	float	\checkmark	\checkmark	\checkmark
SinF, ArcsinF, CosF, ArccosF, ExpF, LogF InvF	float	float	\checkmark	\checkmark	×
SqrtF, SquareF	float	float	\checkmark	\checkmark	\checkmark
dXJS, delXJS, SinXJS, ArcsinXJS,	CochainXJS	CochainXJS	\checkmark	\checkmark	×
CosXJS, ArccosXJS, ExpXJS, LogXJS					
StJR, InvStJR	CochainXJR	CochainXJR	\checkmark	\checkmark	\checkmark
SqrtXJR, SquareXJR	CochainXJR	CochainXJR	\checkmark	\checkmark	×
tranXJT, symXJT	CochainXJT	CochainXJT	×	×	\checkmark
trXJT	CochainXJT	CochainXJS	×	×	\checkmark
MulXJR	(CochainXJR, float)	CochainXJR	\checkmark	\checkmark	\checkmark
MulvXJ	(CochainXJS, CochainXJT)	CochainXJT	×	×	\checkmark
InvMulXJS	(CochainXJS, float)	CochainXJS	\checkmark	\checkmark	×
InnXJR	(CochainXJR, CochainXJR)	float	\checkmark	\checkmark	\checkmark
AddCXJR, SubCXJR	(CochainXJR, CochainXJR)	CochainXJR	\checkmark	\checkmark	\checkmark
CochMulXJS	(CochainXJS, CochainXJS)	CochainXJS	\checkmark	\checkmark	×

BEST HYPERPARAMETERS

	Value					
Hyperparameter	Poisson	Elastica	Linear elasticity			
Number of individuals (μ)	2000	2000	2000			
Crossover/mutation probabilities	(0.2, 0.8)	(0, 1)	(0.2,0.8)			
Mixed mutation probabilities	(0.8, 0.2, 0)	(0.8, 0.2, 0)	(0.7, 0.2, 0.1)			
Stochastic tournament probabilities	(0.7, 0.3)	(1, 0)	(0.7,0.3)			
Regularization factor (η)	0.1	0.01	0			

2D LINEAR ELASTICITY – STANDARD GP

4% recovery rate

HAMLET 2024 SIMONE MANTI 21 AUGUST 2024 PHD STUDENT

2D LINEAR ELASTICITY – NON HOMOG.

HAMLET 2024 SIMONE MANTI 21 AUGUST 2024 PHD STUDENT