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Tensor to scalar ratio r

• A key parameter for understanding the physics of inflation: 

Represents the relative strength of primordial gravitational 

waves (tensor perturbations) to density fluctuations (scalar 

perturbations)

• Provides insights into the energy scale of inflation and the 

early universe's dynamics

Cosmology with gravitational lensing of the 
Cosmic Microwave Background, Louis 

Legrand, ICTP/SAIFR - IFT/Unesp 5
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Challenges in CMB analysis
• The signal is extremely weak, requiring precise instruments and data 

analysis techniques

• Galactic Foregrounds:

o Synchrotron Radiation: Emitted by relativistic electrons spiraling in the 

Galactic magnetic field, this radiation is dominant at low frequencies (~10-100 

GHz).

o Thermal Dust Emission: Dust grains heated by starlight emit radiation, 

dominant at high frequencies (~100-1000 GHz). This emission can mimic or 

overshadow the CMB signal.

o Free-Free Emission: Electrons interacting with ions emit this radiation, adding 

to the contamination, especially at low frequencies.

Image credit: ESA and the Planck
Collaboration
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Challenges in CMB analysis

• Foreground components vary with frequency, necessitating observations at multiple 

frequencies to disentangle the CMB from foregrounds.

• Instrumental Noise and Systematics:

+ Photon Noise: arising from the quantized nature of light. The noise is inherent to signal due to the 

random arrival times of photons. Photon noise is especially significant in the low signal regime of the 

CMB, where the photon count is low, making it a critical factor in the overall noise determination.

+ Detector Noise: This noise comes from the instrument's detectors themselves, including thermal noise, 

electronic noise, and other internal sources.

• Atmosphere
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QUBIC
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The Q & U Bolometric Interferometer 

for Cosmology



QUBIC
• unique instrument combining interferometry 

and bolometry to observe the CMB, using an 

array of bolometers to measure temperature 

and polarization fluctuations

• QUBIC produces multiple peaks due to its 

interferometric setup: Spectral splitting of 

light enables the separation of different 

frequency components, aiding in component 

separation
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Battistelli, E.S., Ade, P., Alberro, 
J.G. et al. QUBIC: The Q & U 
Bolometric Interferometer for 
Cosmology. J Low Temp Phys 199, 
482–490 (2020). 
https://doi.org/10.1007/s10909-
020-02370-0



Neural Networks in CMB Analysis

• Choosing appropriate layers (e.g., convolutional, recurrent, graph-based) depending on 

the data structure 

• Using layers that incorporate physical knowledge (e.g., known operators) 

• Operators like rotation, scaling, and convolution should be well-understood and correctly 

implemented based on problem specifics and used structures

• Proper architecture design ensures that the network can learn complex relationships 

without overfitting (due to unneccesary complexity) or underfitting (due to improper 

introduction of known operators)
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Neural Networks in CMB Analysis

Case-specific issues:

Rotational Invariance: CMB data is inherently spherical, so the analysis must be invariant to 

rotations on the sphere

Handling Sparsity: Both the data and applied operators can be sparse! CMB observations 

often cover only parts of the sky, while operators are represented with sparse matrices 

(e.g. detector beam)

Particularities of the detector: Different instrument process data in different manners. The 

network has to represent the complex process inside QUBIC.
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Adaptation

• Conventional layers need to be adapted for to the complexity of the 

data to maintain accuracy.

• Layers should respect the Healpix geometry!

The heart of any layer is the aggregation function

Calls for proper integration of neighbourhood. – How can we know what 

is proper? 

The analysts choose this based on the specifics of the attempted 

solution!

The aggregation 

function determines 

the operation, but will 

treat patches as 

Euclidian in default!!
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Multifeature data

Data from different sources and types can be represented in a unified structure; naive 

handling of multifeature data can easily lead to discrepancies! 
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Multifeature data

Data from different sources and types can be represented in a unified structure; naive 

handling of multifeature data can easily lead to discrepancies! 

LSTM
Dana type: temporal, 

sequential
Used for: processing 
of TOD, frequency

dependance

Spherical NN
Dana type: spherical

maps
Used for: processing 

intensity maps

Convolution NN
Dana type: 2D 

projections of maps
Used for: finding
structure in small

areas, local feature
extraction

Graph CN
Dana type: spherical
maps with additional

features and
relationships

Used for: complex and
complete studies of

maps 17



The problem

d = Hs

8/19/2024
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The problem

d = Hs

d = R T I P (HW Proj) F A T U s

8/19/2024
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The framework

8/19/2024

T
O
D

r
CAMB

hp

pysm



The framework
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PINNs

- integrating domain knowledge directly into the learning process.

Always ensure that the network's predictions align with known physical principles.

In CMB this can be...

-  spectral characteristics of different components (e.g., CMB, dust, synchrotron).

- following the physical properties of polarization (example: Q and U stokes!).

-  any response function from the instrument.
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PINNs

NETWORK LAYER
• Versatile, modular, captures complex relationships

• Can capture relationships far from ones predicted 
by the model

• More difficult to interpret 

 --> Fitting is possible, requires careful consideration 
of the created kernels and their weights

LOSS FUNCTION
• Best for estimation of parameters from given set of 

data

• Training data needs to be varied to allow 
generalization

• The defined loss function should correspond to the 
physical truth!

• Easier to implement and easier to interpret

--> Fitting is possible, requires handling of possible 
overfitting to training data
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Planck 2013 results. XI. All-sky model of 
thermal dust emission
Planck Collaboration, A&A 571, A11 (2014)
https://doi.org/10.1051/0004-
6361/201323195



In conclusion...
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Thank you for your 

attention!

Leonora Kardum

LABORATOIRE ASTROPARTICULE & 

COSMOLOGIE

for HAMLET Conference

August, 2024 in Copenhagen
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