

Laboratoire de Physique des 2 Infinis

Development of innovative methods for fission trigger construction

<u>B. Pertille</u>^{*a***}**, M. Lebois^{*a*}, M. Mehdi^{*a*}, S. Oberstedt^{*b*}, J. Guillot^{*a*}, D. Thisse^{*c*}, A. Göök^{*b*} et al.

- ^{*a*} Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory, Orsay, France
- ^b European Commission, Belgium
- ^c Atomic Energy Commission (CEA), France

CONTENTS:

- The FRØZEN project in a nutshell & the N-SI-125 experiment setup
 - motivation for innovative fission trigger
- Fission annotations through dFGIC analysis
- Challenges of trace analysis
- Innovative methods based in Al
 - In trace analysis
 - In the second second

ne N-SI-125 experiment setup n trigger nalysis

CONTENTS:

- The FRØZEN project in a nutshell & the N-SI-125 experiment setup
 - motivation for innovative fission trigger
- **Fission annotations through dFGIC analysis**
- **Challenges of trace analysis**
- Innovative methods based in Al
 - In the second second
 - In the second second

Physics motivation for the FRØZEN project

Nuclear and Particle Physics, 47(11):113002, oct 2020.

20/08/2024

Gamma detection energy and multiplicity

- 24 High-Purity Germanium clovers (HPGe)
- PARIS array 72 phoswhiches La(Ce)Br₃:Nal
- Thalia LaBr3

Neutron detection energy and multiplicity

- PARIS array
- Thalia LaBr3

Fission fragments detection

• Ionisation chamber

A very complex response function from ν-Ball2 detector

20/08/2024

HAMLET-PHYSICS Conference/Workshop 2024

Create a model capable of recognizing fission solely based on detector response function

20/08/2024

CONTENTS:

- The FRØZEN project in a nutshell & the N-SI-125 experiment setup motivation for innovative fission trigger
- **Fission annotations through dFGIC analysis**
- **Challenges of trace analysis**
- Innovative methods based in Al
 - In the second second
 - In the second second

Ionisation chamber signals sampled every 2ns A sampled signal is here referred as « trace »

HAMLET-PHYSICS Conference/Workshop 2024

20/08/2024

CONTENTS:

- The FRØZEN project in a nutshell & the N-SI-125 experiment setup motivation for innovative fission trigger
- Fission annotations through dFGIC analysis
- Challenges of trace analysis
- Innovative methods based in Al
 - In the second second
 - In the second second

HAMLET-PHYSICS Conference/Workshop 2024

Trace analysis through most frequently used methods

Trace analysis through most frequently used methods

- Moving average algorithm;
- RC filter;
- Signal baseline correction;
- CR-RC and CR-RC4 shaping filters;
 Trapezoidal shaping filter;
- Signal integration (deposited charge)
- Constant Fraction Discrimination (CFD)

Trace analysis takes ~2s per 1k fission events 3 weeks of data acquisition -> 600M events 300 h or 13 days to process the traces

=> yes, we are working with an optimized multi-threading algorithm

96.9 % α decay 3.1% fission

~330 fissions $\cdot s^{-1}$

CONTENTS:

- The FRØZEN project in a nutshell & the N-SI-125 experiment setup motivation for innovative fission trigger
- **Fission annotations through dFGIC analysis**
- **Challenges of trace analysis**
- Innovative methods based in Al
 - In trace analysis
 - In the second second

Supervised vs. unsupervised learning

Regression vs. classification model

Hyperparameters

- Activation function
- Batch size
- Epochs
- Learning rate
- Loss function
- Number of hidden layers
- Number of neurons per layer

Parameters

Weights and biases

CNN 1D models for trace analysis

- Very degraded cathode time resolution
- Target values might not be optimal

- Automatized search for model / model tuner
- Custom loss function: time resolution

- Very degraded cathode time resolution
- Target values might not be optimal

- Automatized search for model / model tuner
- Custom loss function: **time resolution**

Problems:

- Keras/Tensorflow environment constraints
- Not enough statistics to follow this approach

Next steps:

- Build model « by hand »
- Perform new acquisition to validate models (experiment with dFGIC ongoing)
- Build robust CFD NN -> also requires more data to validate with time resolution

Short term

- Converge to a more robust NN model for trace analysis
- Implement a complete model for dFGIC adapting hyperparameters
- Detailed evaluation of computational costs
 - Prediction time
 - Number and complexity of operations ...

Long term

- Develop new AI algorithms for fission trigger based on ν -Ball2 response function
- Evaluate the correlation between fission observables such as energy and multiplicity of neutrons and gammas for fission recognition

CONTENTS:

- The FRØZEN project in a nutshell & the N-SI-125 experiment setup
 - motivation for innovative fission trigger
- **Fission annotations through dFGIC analysis**
- **Challenges of trace analysis**
- Innovative methods based in Al
 - In the second second
 - In the second second

2D plots to evaluate which fission observables are more or less relevant for fission recognition.

• Neutron multiplicity / energy

(), \boldsymbol{U}_b

Short term

- Converge to a more robust NN model for trace analysis
- Implement a complete model for dFGIC adapting hyperparameters
- Detailed evaluation of computational costs
 - Prediction time
 - Number and complexity of operations ...

Long term

- Develop new AI algorithms for fission trigger based on ν -Ball2 response function
- Evaluate the correlation between fission observables such as energy and multiplicity of neutrons and gammas for fission recognition

Short term

- Converge to a more robust NN model for trace analysis
- Implement a complete model for dFGIC adapting hyperparameters
- Detailed evaluation of computational costs
 - Prediction time
 - Number and complexity of operations ...

Long term

- Develop new AI algorithms for fission trigger based on ν -Ball2 response function
- Evaluate the correlation between fission observables such as energy and multiplicity of neutrons and gammas for fission recognition

		BA

20/08/2024

HAMLET-PHYSICS Conference/Workshop 2024

ACKUP SLIDES

Physics motivation for the FRØZEN project

Adapted from: M. Bender, et al. Future of nuclear fission theory. Journal of Physics G: Nuclear and Particle Physics, 47(11):113002, oct 2020.

20/08/2024

Gamma detection energy and multiplicity

24 High-Purity Germanium clovers (HPGe)

PARIS array 72 phoswhiches La(Ce)Br₃:Nal

Thalia LaBr3

Neutron detection energy and multiplicity

PARIS array Thalia LaBr3

Fission fragments detection

Ionisation chamber

Constant Fraction Discrimination (CFD)

20/08/2024

Ionisation chamber signals sampled every 2ns

A sampled signal is here referred as « trace »

20/08/2024

Adapted from: A. Göök, et al. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 830:366–374, 2016.

$$t_n = \frac{1}{Q_{max}} \cdot \sum_{k=k_0}^{k_0+n} (q_{k+1} - q_k)(k - k_0) \cdot \frac{1}{f_s}$$

* CFD: Constant Fraction Discrimination

Scientific workshop on ν -Ball2 2024

Adapted from: A. Göök, et al. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 830:366–374, 2016.

Energy vs. Electron drift time

Scientific workshop on ν -Ball2 2024

600

800

Back Anode Sum signal

tn-shaped signa

Trace analysis through most frequently used methods

How do we know if the method works?

THALIA LaBr₃ data stored as a trace:

-150

-149

HAMLET-PHYSICS Conference/Workshop 2024

32

-147

-146

-145

-148

Trace analysis through most frequently used methods

- RC filter;
- Signal baseline correction;
- CR-RC and CR-RC4 shaping filters;
- Trapezoidal shaping filter;
- Signal integration (deposited c
- Constant Fraction Discrimination

Cathode time resolution:

R(t) = ~5 ns

04/07/2024

20/08/2024

Scientific workshop on ν -Ball2 2024

Trace analysis through most frequently used methods

- Moving average algorithm;
- RC filter;
- Signal baseline correction;
- CR-RC and CR-RC4 shaping filters; UNIC
 Trapezoidal blocking filters; UNIC
- Trapezoidal shaning filer,
- Signal integration (deposited charge)
- Constant Fraction Discrimination (CFD)

Trace analysis takes ~2s per 1k fission events 3 weeks of data acquisition -> 600M events 300 h or 13 days to process the traces

=> yes, we are working with an optimized multi-threading algorithm

A virtual trigger based on an unsupervised hierarchical cluster algorithm selects the relevant data to reconstruct the physics event

Supervised vs. unsupervised learning

Regression vs. classification model

Hyperparameters

- Activation function
- Batch size
- Epochs
- Learning rate
- Loss function

Number of hidd

Number of neur

М-1 N-1 С-1 $Y_{i,j,k} = \sum \sum \sum \sum (X_{i+m,j+n,c} \cdot W_{m,n,c,k}) + bias_k$ m=0 n=0 c=0

Parameters

Weights and biases

$$Y = \sum_{i} (weight_i \cdot input_i) + bias$$

20/08/2024

20/08/2024

Parameters

Weights and biases

$$Y_{i,j,k} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \sum_{c=0}^{C-1} (X_{i+m,j+n,c} \cdot W_{m,n,c,k}) + bias_k$$

Kernel size vs. filters

- Kernel size $K_{(n,m)}$
- Number of filters

HAMLET-PHYSICS Conference/Workshop 2024

20/08/2024

Parameters

Weights and biases

$$Y_{i,j,k} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \sum_{c=0}^{C-1} (X_{i+m,j+n,c} \cdot W_{m,n,c,k}) + bias_k$$

Kernel size vs. filters

- Kernel size $K_{(n,m)}$
- Number of filters

HAMLET-PHYSICS Conference/Workshop 2024

20/08/2024

20/08/2024

For a kernel dimension of (k, w), A filter dimension will be (k, w, n^*)

The number of filters is related to the number of features one wants to extract from the input data

