A GRU Method for Annual Layer Identification

A GRU Encoder-Decoder model for automatic annual layer identification is
developed. The GRU provides a sigmoid output, which is then used to find
annual layer positions with a peak detection algorithm.

The developed GRU model is found to be able to match the GICC annual layer
count for all three tested ice cores within a difference of 4.36%. Within the
reference horizons used for GRIP and NGRIP, upwards of 78.9 of GRU counts
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There are several possible ways of arranging the structure of a GRU neural
Si‘jder DeCGOIZEr network. Here, a bidirectional Encoder-Decoder structure is utilized,
ha which is similar to the structure from the original article (Cho et al., 2014).
B HD e - A Each hidden layer consists of 32 neurons, and the Adam optimizer is used
O Ig:rt > fay— > to minimize the binary cross entropy (BCE) during training.
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: ‘ : ' o o Ol;;l;lel; % A schematic of the GRU structure is shown to the left, with the governing
- - ;: equations for each of the gates and the candidate hidden state shown
E P ' below. The full unfolded architecture is shown in the bottom left.
l I I é .................................... Once the model is trained, it produces predictions of the likely annual
layer positions. Using a peak detection algorithm, we can get the final
’ : annual layer positions as shown in the figure below.
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3] ES  NoRPK=2 13 1304 0.07% (called blocks here), 89.9% and 78.9% of GRU counts are
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ooz 4 s e s s e s s e e Nompror — mis im—swi —  respectively. Differences between GRU counts and
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 GRIP TOE 1204 (1233) 1259 4.36% (2.06%) ) .
. 1 2 3 4 5 6 7 8 9 10 11 12 13 ia ‘15 16 17 18 19 DYES K —2 3724 3814 2.39% GICC counts for all runs are shown in the table to the
. DYE-3 K =3 3749 3814 1.70%

O“'g MW\/\ DYE-3 'TOE’ 3439 3414 0.73% left. Overall, the model performs excellently, but the
(@) . . . o, e .
T3, peak detection routine is sensitive to parameter choice.
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