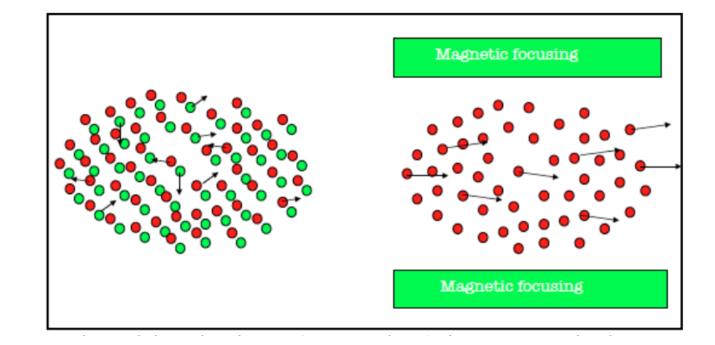
ADVANCING NON-LINEAR SPACE-CHARGE

Isabella Vojskovic

21/08/2024

SOME BACKGROUND

Forces on Particles $\vec{F} = \frac{d\vec{p}}{dt} = m\vec{a} = q\left(\vec{E} + \vec{v} \times \vec{B}\right)$



6D – state vector

 $\vec{x} = (x, p_x, y, p_y, z, \delta)$

Propagating Particles

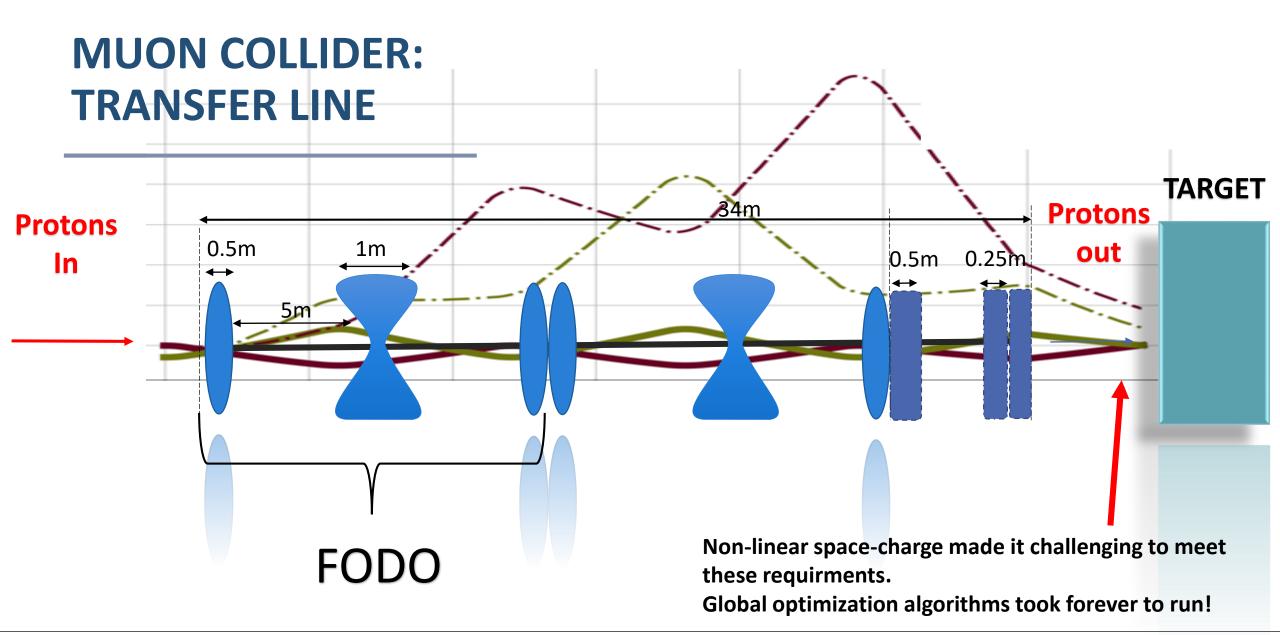
SC-kick, Magnet-kick, SC-kick, Magnet-kick etc...

Easy if distribution is such that the Space - charge force is assumed to be linear. Otherwise.. It is computationally expensive

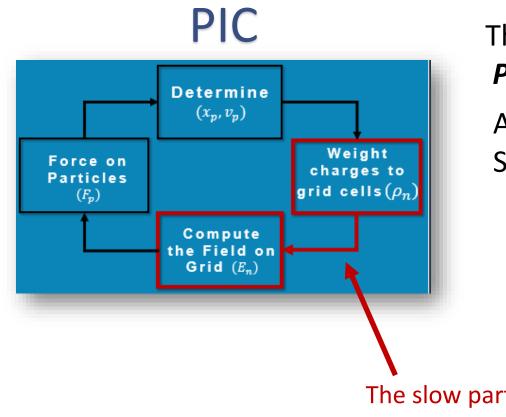
Phase-Space

Space-Charge

External Fields



HOW IS NON-LINEAR SPACE-CHARGE MODELLED?



The most common way is to use: *Particle In Cell (PIC).*

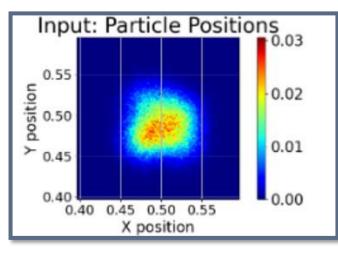
A Numerical way to Solve the Poisson Equation – Second-Order PDE.

$$\nabla \cdot E = -\nabla^2 \Phi = \frac{\rho}{\epsilon_0}$$

$$\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2}$$
ts!

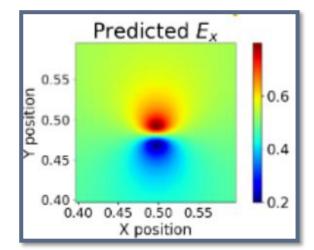
SUBSTITUTE COMPUTATIONALLY EXPENSIVE PARTS WITH NEURAL NETWORKS

1. Bin the particle position and use as input to the network.

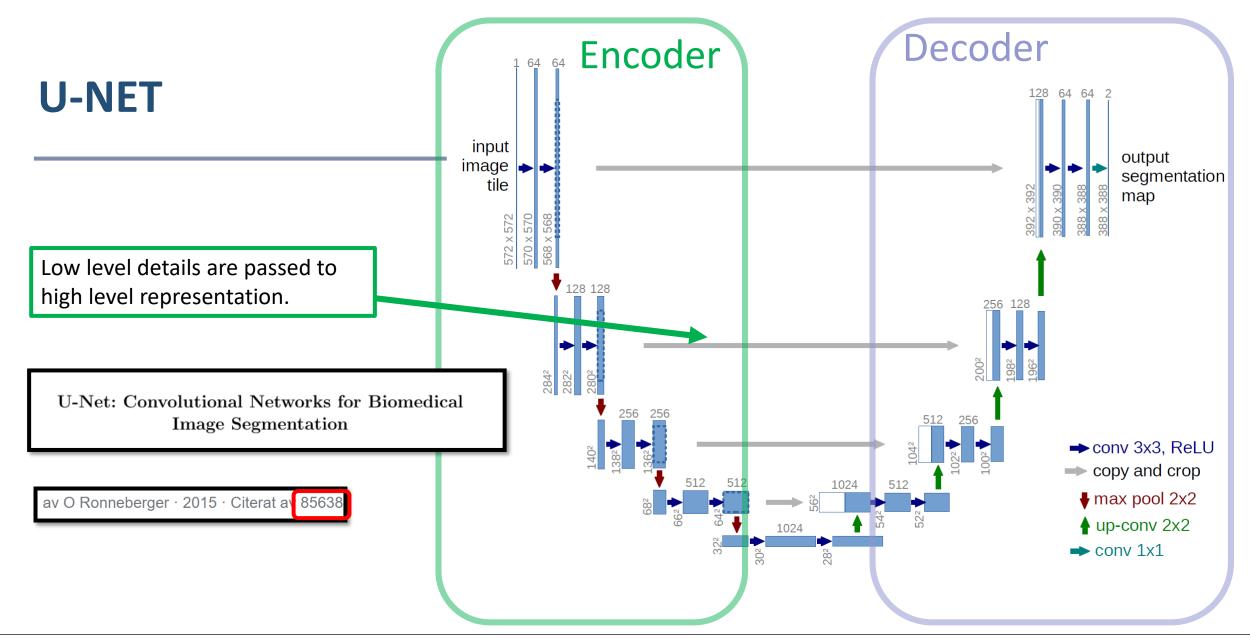


Input

2. Calculate the corresponding the electric field of the distribution using PIC

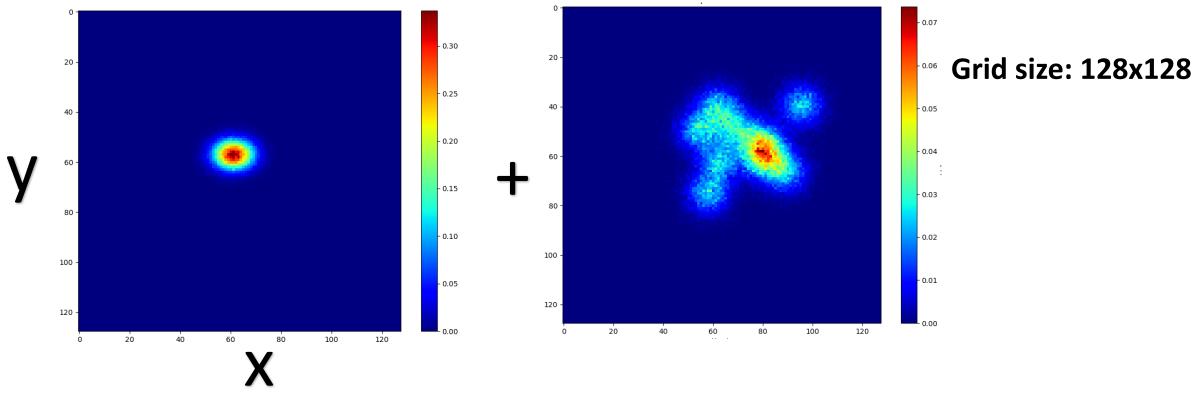


Output

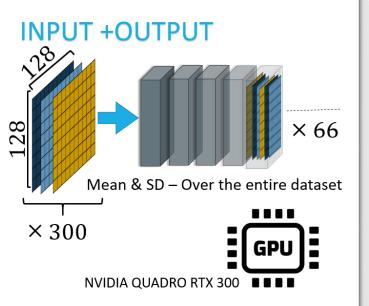


2D – CASE INPUT DATA

100.000 particles



DATA & TRAINING



Library: TensorFlow

Activation Function: Leaky ReLU

Final Activation Function: Sigmoid Function

Loss Function: MSE or Logcosh

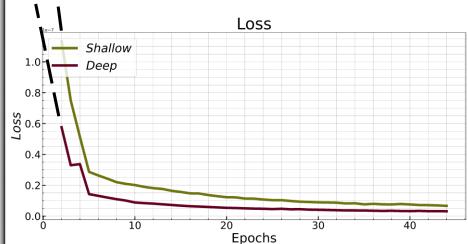
Initial Learning Rate: 0.001

Optimization: Adaptive stochastic gradient descent

Dataset Size: Split into multiple sets: 1500 matrices per training

Batch Size: Normally 4 or 16 $(2^2, 4^2$ for optimal GPU)

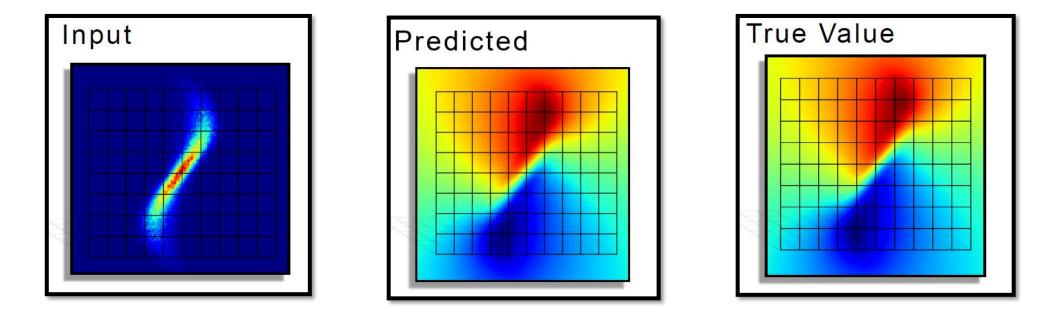
Epochs: 8 or 12



After a few minutes of training the model is capable to achieve a relative error of 0.5% on the validation set.

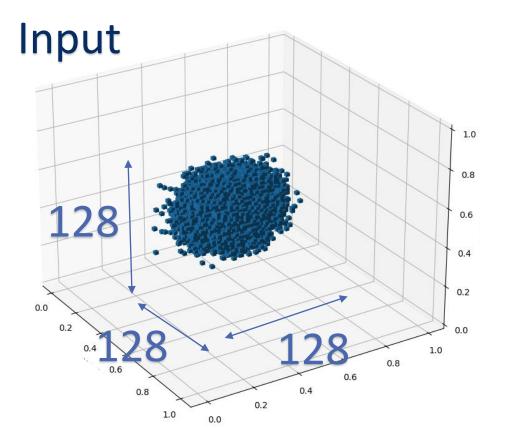
The model is capable to achieve a relative of 1% on a non-seen dataset Time

Time taken: 0.03s on CPU

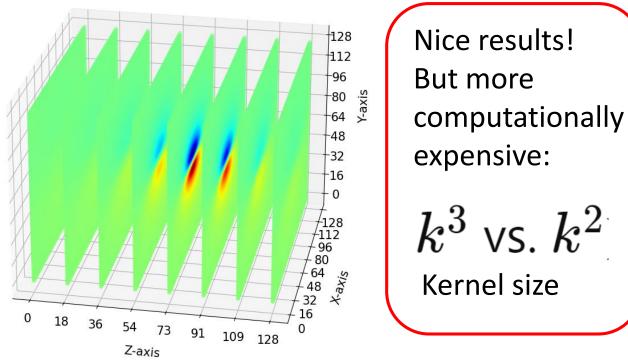


3D CONVOLUTIONS

Max 0.7% error across all slices in 10 randomly sampled batches



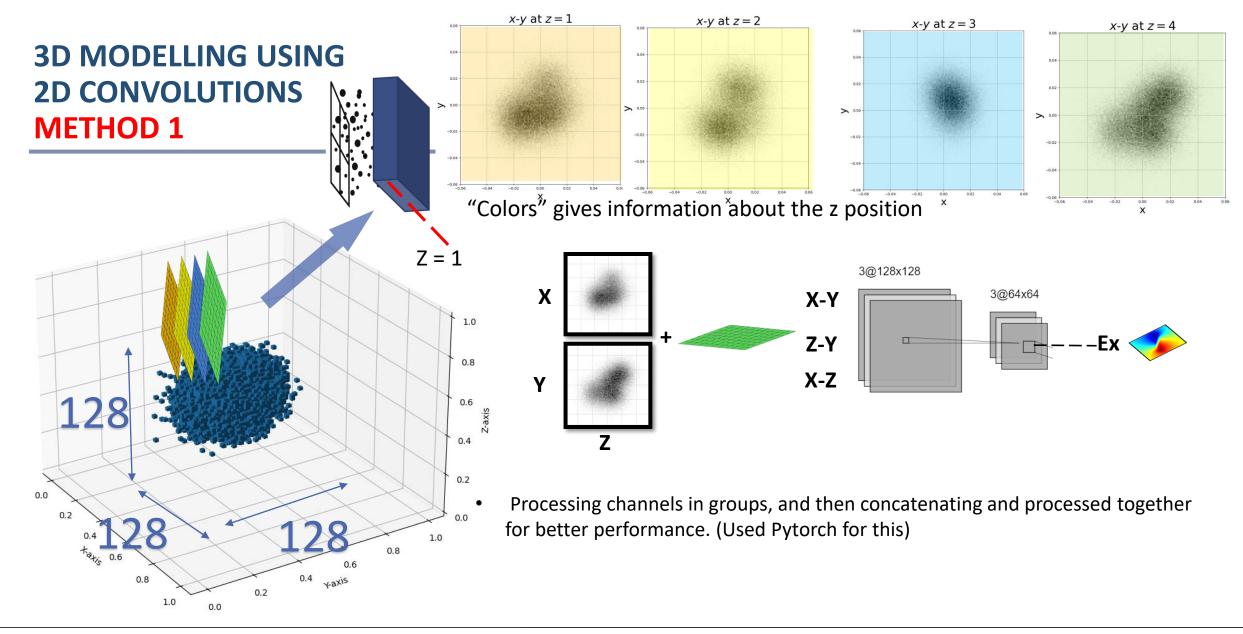
Output (One Plane)



EUROPEAN SPALLATION SOURCE

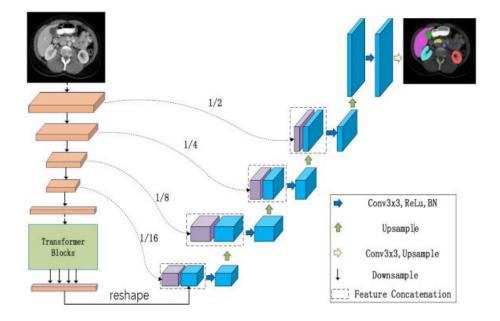
SPEED UP

Model	Time
TraceWin (PIC simulation)	8s (3D) 2s (2D)
2D Conv	0.05s
3D Conv	0.5s
2D Conv 128 images	0.1s

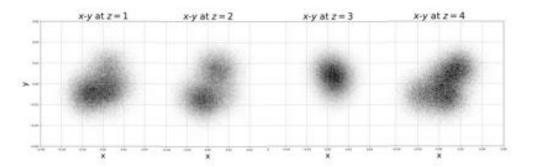


3D MODELLING USING 2D CONVOLUTIONS METHOD 2

LEVIT-UNET: MAKE FASTER ENCODERS WITH TRANSFORMER FOR MEDICAL IMAGE SEGMENTATION



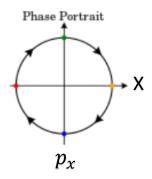
Vision Transformers



ENERGY CONSERVATION -SYMPLECTICITY

Energy Conserving Pendulum Give Rise to Conserved Phase-Space Area

> A pendulum's dynamics in phase-space looks like:



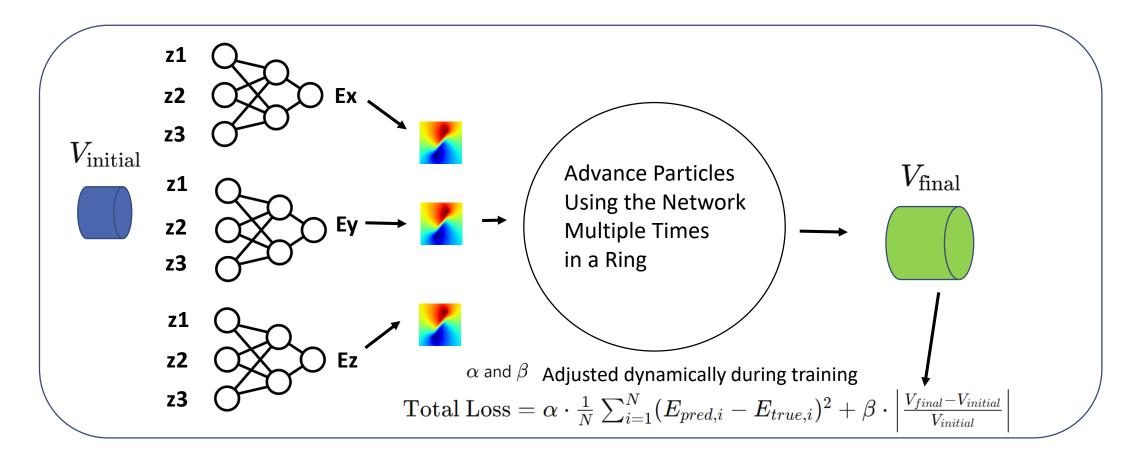
Energy-Conserving: An Inherent Property of Hamiltonian Dynamics

We use the Hamilton's canonical equations of motion. Not Newton's Equations.

$$\frac{d\mathbf{q}}{dt} = \frac{\partial \mathcal{H}}{\partial \mathbf{p}}, \quad \frac{d\mathbf{p}}{dt} = -\frac{\partial \mathcal{H}}{\partial \mathbf{q}} \quad E_{tot} = \mathcal{H}(\mathbf{q}, \mathbf{p})$$

HAMLET-PHYSICS 2024

INCORPORATE PHYSICS



THANK YOU

Contact Info:

- 💄 Isabella Vojskovic
- +46 (76)166 7309
- 🖂 Isabella.vojskovic@ess.eu

stablediffusic

HAMLET-PHYSICS 2024