



Contribution ID: 42

Type: **Parallel or poster**

## ADVANCING NON-LINEAR SPACE CHARGE SIMULATIONS

*Wednesday 21 August 2024 11:10 (20 minutes)*

This study explores various neural network approaches for simulating beam dynamics, with a particular focus on non-linear space charge effects. We introduce a convolutional encoder-decoder architecture that incorporates skip connections to predict transversal but also coupled 3D electric self-fields. The model demonstrates robust performance, achieving a Mean Absolute Percentage Error (MAPE) of 0.5% within just a few minutes of training. Our findings indicate that these advancements could provide a more efficient alternative to numerical non-linear space-charge methods in beam dynamics simulations, where the speed up is significant.

**Author:** VOJSKOVIC, Isabella (Lund University)

**Co-author:** Mr LAFACE, Emanuele

**Presenter:** VOJSKOVIC, Isabella (Lund University)

**Session Classification:** Parallel