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300 pb!1 at 5TeV, 5 fb!1 at 7TeV, 20 fb!1 at 8TeV and 140 fb!1 at 13TeV. Reduced
integrated luminosities have been collected by the LHCb4 and ALICE5 experiments
due to dedicated luminosity leveling for their interaction regions.

This paper provides a compact summary of physics results with LHC data in the
¯eld of electroweak (EW) and strong (QCD) processes with some re°ections on
future measurements. The extent of the results that have been produced can be
visualized in Fig. 1 showing results in terms of cross-sections measured by the
ATLAS Collaboration.6 Similar summary plots are available also from the CMS
Collaboration.7

The structure of this paper is as follows. Section 2 reviews results from fully ha-
dronic ¯nal states with high-energy jets, and Sec. 3 is devoted to measurements of jets
produced in association with a vector boson. Results from inclusive Drell{Yan (DY)
processes are discussed in Sec. 4, while Sec. 5 is dedicated to multiboson productions.
Measurements of vector boson fusion (VBF) and scattering (VBS) processes are ex-
amined in Sec. 6, and ¯nally, interpretations of results in beyond the Standard Model
(BSM) frameworks are reported and assessed in Sec. 7. All results are in reasonable
agreement with Standard Model (SM) predictions, and therefore, BSM interpretations
are provided with limits on parameters of new physics scenarios.

Fig. 1. Summary of ATLAS Standard Model total and ¯ducial cross-section measurements in proton
collisions from 5TeV to 13TeV.6 Shown results include electroweak measurement, QCD processes, top
quark and Higgs boson productions. Similar summary plots for CMS results are also available.7
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Impressive performance of the Standard Model

Why keep on?

The SM looks complete!
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Open questions

NASA, ESA, AND THE HUBBLE HERITAGE TEAM (STSCI/AURA)

Unexplained phenomena: 

• Dark Matter

• Matter-antimatter asymmetry

• Dark Energy

Unsatisfactory structure of the SM: 

• Hierarchy problems (Higgs, flavour)

• Naturalness

• Quantum Gravity etc

Plethora of Beyond the SM theories to test against data

The SM works!

Fermions
Hierarchies

Neutrino
masses

Baryon
asymmetry

Light Higgs

CP violation

Dark matter

· · ·

Hugo Serôdio Selective topics in BSM Physics March 27, 2018 18 / 68
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•   Explore physics at the highest energy scale (TeV scale at the LHC) 
 
      - search of new Higgs scalars ( = Higgs “partners”) 
      - search for low-energy traces of supersymmetry (SUSY) 
      - investigate various scenarios of physics beyond the SM

•  Precision measurements of SM processes: 
 
      - test nontrivial predictions of the SM, including very rare processes 
      - search for deviations from the SM sensitive to new physics at high scales 
      - improve precision of the SM parameter measurements 
      - study the Higgs boson and the EWSB sector 
      - study QCD dynamics and parton content of the proton  
      - QCD/MC tools development 
      - exploit the SM measurements as “Standard Candles” to tune and test 
        detector performance

Goals of Particle Physics
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Emerging anomalies in collider data SM NP SM NP
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Figure 2. Feynman diagrams showing some of the processes where anomalies are observed. The left diagrams depict the SM
process, while the right-handed ones show a possible NP explanation. a) Schwinger term contribution to aµ and LQ
explanation b) Leading b -decay contribution in the SM and modification via a vector-like quark c) W contribution to R(D(⇤))
and LQ effect d) W box contribution to b ! s`+`� in the SM and Z0 effect e) Z ! bb̄ and its modification via vector-like
quarks f ) top pair production and decay in the SM and new Higgses “polluting” the measurement g) di-di-jet production in the
SM and NP contribution via DQs h) pp ! e+e� in the SM and LQ contribution.
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Standard Model New Physics New Physics Standard Model

Crivellin, Mellado, Nature Reviews Physics 6, 294 (2024)
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Why ML is relevant for Particle Physics
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EVENT RECONSTRUCTION
Event reconstruction: deciphering the detector signals 

what are the outgoing particles? 

what are their momenta, energy, …?

49
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Microscopic physics
(particle interactions,

scattering…)

Large-distance phenomena
(hadronisation, propagation, jets…)

Detector response

Particle physics
experiments produce enormous

datasets of high complexity!

ML is a powerful new tool that 
enables us to get more physics 

out of these big datasets

We live in a very special point of history 
similar to invention of a telescope 

ML would enable us to see features we could not see before —  “telescope” for Big Data!

Karagiorgi, Kasieczka, Kravitz, Nachman, Shih, arXiv:2112.03769

What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)

Zhi-Wei Wang王志伟 (UESTC电子科技大学) PT and GW in Strongly Coupled DM 2024年6月1日 4 / 56
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What ML can do for particle physicists

ML for big
datasets

classification
regression
clusteringfast simulation

anomaly detection

density estimation

etc etc…

What we could 
do before,

but ML does
better job

What we could 
not do before,
but ML makes 

it possible

raw data

fewer assumptions

entire calorimeter

showers

fast simulation

in full PS

high-D phase space

low level features

parameter inference

new techniques for anomaly detection

added value 
of modern ML

many more…

Whatcomposesthestronglycoupledsector?

DarkYang-Millstheories
Puregluons)confinement-deconfinementphasetransition
Gluons+Fermions

Fermionsinfundamentalrepresentation)chiralphasetransition
Fermionsinadjointrep.)confinement&chiralphasetransition
Fermionsin2-indexsymmetricrep.)confinement&chiralphasetransition

Gluons+Fermions+Scalars(notexploredyet)

Zhi-WeiWang王志伟(UESTC电子科技大学)PTandGWinStronglyCoupledDM2024年6月1日4/56
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Biggest advantages of ML

✦  greatly enhanced sensitivity/precision [x10-100]
✦  accelerated simulation [e.g. fast simulation]
✦  accelerated/efficient extraction of physics [inference]
✦  ML is cross-disciplinary [same methods can be used in many fields]
✦  ML is not only for experimentalists - theorists use “simulated data” a lot!

Mehta et al, Phys. Rept. 810, 1-124 (2019)
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https://github.com/jmduarte/Nomological_Net_ML_Particle_Physics?tab=readme-ov-file

For comprehensive
review, see
https://iml-wg.github.io/HEPML-LivingReview/
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Learning from data
ML = sophisticated curve fitting!

✦  the data instances 
  are considered to be drawn i.i.d. from some data 
  distribution 

✦  often we are interested to “learn” a function 
  from the data for some parameters (e.g. weights, biases)  
           Neural Network, or made up of NNs, or smth else… 

✦  the learning process (e.g. NN training) is optimisation of an objective (loss function) 
 
 

✦  supervised learning [regression or classification] — we want             to take a specific form 
  e.g. binary classification                      for truth labels                   (QCD jets vs top jets) 

✦  the objective is to get as close to the truth labels as possible e.g. minimise the mean squared  
   error (MSE) loss 

✦  Truth labels often come from simulation, or when categorisation of the data is obvious  
  e.g. hand-labelled data (cat vs dog, natural images etc)

~xi ⇢ Rd i = 1 . . . N

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x)

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓)

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

[1] Georgi, Glashow, PRL32 (1974), 438

1
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~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

[1] Georgi, Glashow, PRL32 (1974), 438

1

Example: feed-forward NN (MLP)
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Less than supervised
Data often come from experiments (e.g. LHC) without truth labels (non 
human interpretable) while simulations are not perfect -> What to do?

✦  in Particle Physics the data is very complex and not clearly separable into categories 
          large overlap in their distributions 

✦  Unsupervised learning — no labels available at all — data-driven/simulation-free approach! 
          uncovering hidden patterns, structures or relationships in the data 
          Examples: clustering similar data points, reducing dimensionality for visualisation 

✦  “Noisy” labels: weakly supervised learning — a powerful tool in New Physics searches: 
         data-derived labels that correlate with a given category [e.g. signal S vs background B]  
         but may not be EXACTLY in that category 
         Splitting the data into “signal region” [S-enriched] + “control region” [B-enriched], 
         a generative model is applied for anomaly detection 

✦  A mix of labelled and unlabelled data: semi-supervised learning 
         simulation+data to mitigate the simulation effects, or when parts cannot be labeled 

✦  Data-driven methods to learn the objective: self-supervised learning — by using symmetries 
  or deleting parts of the data and trying to fill that in [relevant in Large Language Models] 
         useful for learning embeddings (e.g. using data-derived labels on jets related or not 
         related by rotation, one learns a jet representation encoding the symmetry)

What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)

Zhi-Wei Wang王志伟 (UESTC电子科技大学) PT and GW in Strongly Coupled DM 2024年6月1日 4 / 56
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Generative ML
Can we generate more samples that follow the same distribution as the data?

✦  We want to learn the data probability distribution              [density estimation] and 
  then sample from it — often, a very difficult task! 
          we can learn to sample from              without actually learning this function 

✦  Generative modelling — to learn                as close as possible to              and then sample 
  to generate (dream up) synthetic data capturing underlying patterns of the original dataset

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

[1] Georgi, Glashow, PRL32 (1974), 438

1
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pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

pmodel(x)

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

[1] Georgi, Glashow, PRL32 (1974), 438

1

latent 
space

ou
tp

ut

noise

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

pmodel(x)

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

pmodel(x)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ m

[1] Georgi, Glashow, PRL32 (1974), 438

1

synthetic data 

sampled from 

typically, a simple distribution like

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

pmodel(x)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ m

[1] Georgi, Glashow, PRL32 (1974), 438

1

Common applications in Particle Physics:

✦  fast simulation e.g. “surrogate” modelling (training on few samples to generate 
  more), phase space sampling (integrations)

✦  anomaly detection — outliers (clean up data), group anomalies (bumps from NP)
✦  simulation based inference e.g. EFT fits  

learnt explicitly 

or implicitly

data

Methods of generative ML

What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
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Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
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Gluons + Fermions + Scalars (not explored yet)

Zhi-Wei Wang王志伟 (UESTC电子科技大学) PT and GW in Strongly Coupled DM 2024年6月1日 4 / 56

Generative Adversarial Networks (GANs)
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Variational Autoencoders (VAE)

What composes the strongly coupled sector?

Dark Yang-Mills theories
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Normalising Flows

What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)

Zhi-Wei Wang王志伟 (UESTC电子科技大学) PT and GW in Strongly Coupled DM 2024年6月1日 4 / 56

Diffusion Models
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Autoencoders

latent 
space
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tp

ut

in
pu

t

noise

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

pmodel(x)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇢ pnoise(z) = N(0, 1)n n ⌧ m

[1] Georgi, Glashow, PRL32 (1974), 438

1

original data set

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ m

[1] Georgi, Glashow, PRL32 (1974), 438

1

synthetic data set

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

[1] Georgi, Glashow, PRL32 (1974), 438

1

“encoder” “decoder”

data-to-data mapping (no labels)

Simplest loss function:

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

[1] Georgi, Glashow, PRL32 (1974), 438

1

information bottleneck

✦  AE maps data back to itself through reduced latent space trying to figure out a latent 
  representation of the data that captures its essential features

Data-driven 
compression

✦  AE trained on “normal” events as an “anomaly detector” [only outliers, not overdensity] 
         an outlier causes the loss to have a “cluster” at large values 
         anomalies may be separated in the latent space — compression enhances clustering 
         BUT no guarantee that AE learns sensible latent space [no probabilistic interpretation]

What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)

Zhi-Wei Wang王志伟 (UESTC电子科技大学) PT and GW in Strongly Coupled DM 2024年6月1日 4 / 56

What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)

Zhi-Wei Wang王志伟 (UESTC电子科技大学) PT and GW in Strongly Coupled DM 2024年6月1日 4 / 56

✦  Simulation-based AE for New Physics search 
         take simulated jet images as data: QCD jets as B and NP jets as S (anomaly) 
         if S is rare,  AE separates the anomaly well (in the tail of the loss)

What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)

Zhi-Wei Wang王志伟 (UESTC电子科技大学) PT and GW in Strongly Coupled DM 2024年6月1日 4 / 56

What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)

Zhi-Wei Wang王志伟 (UESTC电子科技大学) PT and GW in Strongly Coupled DM 2024年6月1日 4 / 56

✦  AE as a “complexity detector”  
         train on QCD jets, finds top jets, BUT train on top jets, does not find QCD jets

What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)

Zhi-Wei Wang王志伟 (UESTC电子科技大学) PT and GW in Strongly Coupled DM 2024年6月1日 4 / 56

Good for triggering/fast simulation

Finke et al, JHEP 06, 161 (2021)

Farina, Nakai, Shih, PRD 101, 075021 (2020) 
Heimel et al, SciPost Phys. 6, 030 (2019)
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Variational Autoencoders
Can we enforce the latent space to have a suitable probabilistic interpretation?

✦  VAE as a latent variable model:                 (the “prior”) while                    we get a set 
  drawn from              — by integrating out     we get data distribution                           

✦  To determine the conditional probability              — learn it by maximising the maximum 
likelihood estimation (MLE) w.r.t NN parameters  
 
 
 

✦  Variational “posterior”              — still samples z-space but differently depending on x 

✦  Utilising MC sampling of the integral from the posterior and applying Jensen inequality: 
 
 
 
 

✦  Taking normal distribution 

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z)

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z)

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi}

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

MLE =
X

x⇠pdata(x)

log p✓(x) p✓(x) =

Z
p✓(x|z)p(z)dz

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

MLE =
X

x⇠pdata(x)

log p✓(x) p✓(x) =

Z
p✓(x|z)p(z)dz

[1] Georgi, Glashow, PRL32 (1974), 438

1

“decoder”

with Bayesian evidence hard!

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

MLE =
X

x⇠pdata(x)

log p✓(x) p✓(x) =

Z
p✓(x|z)p(z)dz

r (z|x)

[1] Georgi, Glashow, PRL32 (1974), 438

1

“evidence lower bound” (ELBO)

“encoder”

Kullback-Leibler divergence

true posterior for a given 

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

MLE =
X

x⇠pdata(x)

log p✓(x) p✓(x) =

Z
p✓(x|z)p(z)dz

r (z|x) p(x)

log p✓(x) �
X

z⇠r (z|x)

log
p✓(x|z)p(z)
r (z|x)

= log p✓(x)�KL(r (z|x)||p✓(z|x))

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

MLE =
X

x⇠pdata(x)

log p✓(x) p✓(x) =

Z
p✓(x|z)p(z)dz

r (z|x) p(x)

log p✓(x) �
X

z⇠r (z|x)

log
p✓(x|z)p(z)
r (z|x)

= log p✓(x)�KL(r (z|x)||p✓(z|x))

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

MLE =
X

x⇠pdata(x)

log p✓(x) p✓(x) =

Z
p✓(x|z)p(z)dz

r (z|x) p(x)

log p✓(x) �
X

z⇠r (z|x)

log
p✓(x|z)p(z)
r (z|x)

= log p✓(x)�KL(r (z|x)||p✓(z|x))

p✓(x|z) = N(µ✓(z), �)

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0
)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

MLE =

X

x⇠pdata(x)

log p✓(x) p✓(x) =

Z
p✓(x|z)p(z)dz

r (z|x) p(x)

log p✓(x) �
X

z⇠r (z|x)

log
p✓(x|z)p(z)
r (z|x)

= log p✓(x)�KL(r (z|x)||p✓(z|x))

p✓(x|z) = N(µ✓(z), �) ELBO = Er (z|x)

h
� ||x� µ✓(z)||2

2�2

i
�KL(r (z|x)||p(z))

[1] Georgi, Glashow, PRL32 (1974), 438

1

reconstruction error of vanilla AE

VAE as a “regularised” vanilla AE  
with a “smoothing” KL-term

(posterior tends to the prior)

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0
)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

MLE =

X

x⇠pdata(x)

log p✓(x) p✓(x) =

Z
p✓(x|z)p(z)dz

r (z|x) p(x)

log p✓(x) �
X

z⇠r (z|x)

log
p✓(x|z)p(z)
r (z|x)

= log p✓(x)�KL(r (z|x)||p✓(z|x))

p✓(x|z) = N(µ✓(z), �) ELBO = Er (z|x)

h
� ||x� µ✓(z)||2

2�2

i
�KL(r (z|x)||p(z))

[1] Georgi, Glashow, PRL32 (1974), 438

1

Maximised!
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Normalising Flows

✦  We can achieve both — get the latent space z and do density estimation (DE) 
 
 
 

✦  We directly optimise the negative-log likelihood [tends to perform better than VAE] 
 
 

✦  Trade off: more ambitious/challenging, bad scaling with dimensions; 
         Jacobian of           matrix takes           operations repeated many times 

✦  A small family of invertible functions with upper-triangular matrices:          operations! 
         “autoregressive transformation” 

✦  To gain on expressivity [= having enough parameters to learn the transform], one can chain 
  multiple such transforms, permute between them —  
         Masked Autoregressive Flow (MAF):                                                             where 
         the coefficients can be thought as outputs of one big NN (slow sampling) 
         Inverse Autoregressive Flow (IAF): inverse algorithm (slow training) 

✦  “Density distillation”: first train the MAF then distill it into an IAF [fit IAF to MAF] 

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0
)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

MLE =

X

x⇠pdata(x)

log p✓(x) p✓(x) =

Z
p✓(x|z)p(z)dz

r (z|x) p(x)

log p✓(x) �
X

z⇠r (z|x)

log
p✓(x|z)p(z)
r (z|x)

= log p✓(x)�KL(r (z|x)||p✓(z|x))

p✓(x|z) = N(µ✓(z), �) ELBO = Er (z|x)

h
� ||x� µ✓(z)||2

2�2

i
�KL(r (z|x)||p(z))

z = f(x, ✓) x = f�1
(z, ✓)

[1] Georgi, Glashow, PRL32 (1974), 438

1

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0
)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

MLE =

X

x⇠pdata(x)

log p✓(x) p✓(x) =

Z
p✓(x|z)p(z)dz

r (z|x) p(x)

log p✓(x) �
X

z⇠r (z|x)

log
p✓(x|z)p(z)
r (z|x)

= log p✓(x)�KL(r (z|x)||p✓(z|x))

p✓(x|z) = N(µ✓(z), �) ELBO = Er (z|x)

h
� ||x� µ✓(z)||2

2�2

i
�KL(r (z|x)||p(z))

z = f(x, ✓) x = f�1
(z, ✓)

[1] Georgi, Glashow, PRL32 (1974), 438

1

Invertible map between the data and latent spaces

~xi ⇢ Rd i = 1 . . . N

pdata(x) f(x, ✓) ✓

L(✓) =
X

data

L[f(x, ✓)]

f(~xi, ✓) = yi yi = 1 or 0

L = (f(~xi, ✓)� yi)
2

x0 ⇢ Rd ⇠ pmodel(x
0
)

x ⇢ Rd ⇠ pdata(x) z ⇢ Rn ⇠ pnoise(z) = N(0, 1)n n ⌧ d

L = ||x� x0||2

z ⇠ p(z) x ⇠ p✓(x|z) {xi, zi} p(x, z)

MLE =

X

x⇠pdata(x)

log p✓(x) p✓(x) =

Z
p✓(x|z)p(z)dz

r (z|x) p(x)

log p✓(x) �
X

z⇠r (z|x)

log
p✓(x|z)p(z)
r (z|x)

= log p✓(x)�KL(r (z|x)||p✓(z|x))

p✓(x|z) = N(µ✓(z), �) ELBO = Er (z|x)

h
� ||x� µ✓(z)||2

2�2

i
�KL(r (z|x)||p(z))

z = f(x, ✓) x = f�1
(z, ✓)
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Resonant anomaly detection: SIC

How we use ML in searches for new phenomena in Particle Physics?
✦  Assume S is localised (resonant) in some feature (typically, invariant mass) and B is smooth241 Page 2 of 21 Eur. Phys. J. C (2024) 84 :241

ical models involving supersymmetric particles, dark mat-
ter candidates, or heavy matter generations abound, inform-
ing past, current, and planned analyses at the LHC [3–9].
Given that such past searches for specific alternatives to
the Standard Model (SM) have been unsuccessful, there
has been a push to run broader, model-agnostic searches
for new physics in parallel. In particular, machine learn-
ing (ML) has enabled many new search strategies [10–
12].

One of the most popular and well-motivated search strate-
gies for evidence of physics beyond the Standard Model is
resonant anomaly detection. In such investigations, the new
physics signal is expected to take the form of a new particle,
i.e. a resonance with respect to a mass-like event variable. The
search strategy then involves looking for a localized excess
of these new physics events with respect to the SM back-
ground.

There now exist many ML methods for resonant anomaly
detection (AD)1 with comparable sensitivities [15–27], some
of which have also been applied to data [28–31]. These meth-
ods have largely been developed independently of each other,
with different strengths and weaknesses. However, there has
not yet been a thorough study of the complementarity of
these techniques. In particular, we want to ask the questions:
can we improve signal sensitivity by combining these meth-
ods? Can we improve robustness in the background-only
case by combination? Do these different methods classify
the same things as “signal-like” for background and signal
events?

In this paper, we evaluate a selection of these resonant AD
methods on equal footing, using an identical methodologi-
cal setup for each. In Sect. 2, we provide a more detailed
background of the resonant AD procedure and introduce the
four detection methods that we will consider in this paper. In
Sect. 3, we consider how similar the detection methods are to
each other, gauging whether different methods pick up dis-
tinct components of the phase space of resonant anomalies.
In Sect. 4, we combine the four sample generation meth-
ods with the goal of increasing sensitivity for a resonant AD
task. We conclude in Sect. 5, suggesting avenues for further
exploration.

As a word of caution: this study is not meant to be
an exhaustive summary for machine learning-enhanced
anomaly detection across all signals and setups. For illus-
trative purposes, we focus on one well-studied signal model
and signal region and compare our findings with the existing
literature. Practitioners should examine different methods in
their own region of phase space.

1 We are not counting generic AD methods applied to the resonant case,
see e.g. the recent ATLAS results [13,14] and method papers they cite.

Fig. 1 A schematic of the resonant anomaly detection motivation. The
goal is to observe an excess of signal (blue) events above a background
(red) process. The signal is localized in m to a signal region (SR), and a
model for background can be derived from data in the sidebands (SB)
regions. Typically, the signal-background discrimination task makes use
of features other than m. Figure is taken from [22]

2 Methodology

2.1 Overview of resonant anomaly detection

The goal of resonant AD (illustrated schematically in Fig. 1)
is to find an excess of beyond-the-Standard Model (BSM)
events that are localized in some event variable m (usually,
a mass-like feature). The BSM signal thus corresponds to a
new particle with a nonzero m, expected to be reconstructed
within a signal region, SR, defined as an interval in m. In
particular, the search makes use of a set of other (i.e. non-
m) features in order to elevate the sensitivity above that of
a standard bump hunt. Importantly, the excess events must
be observed with respect to a SM background, but this back-
ground is nontrivial to construct: using out-of-the-box simu-
lated data is not ideal given the numerous necessary approx-
imations made for the hard-process, showering, and detector
simulation steps; using actual data from outside of the signal
region (or in sideband regions, SB) requires the analysis to
only use event features that are statistically independent from
the mass variable [15,16,19].

An alternative strategy is to construct a set of synthetic
SM samples, or events that are representative of the SM back-
ground process in the same mass space as the BSM events. A
binary classifier trained to discriminate the synthetic samples
from detected data is then the optimal classifier for discrimi-
nating SM background from the new physics (see Ref. [32]),
so long as the synthetic samples are indeed a faithful repre-
sentation of actual SM (i.e. not containing any events derived
from a resonant anomaly) events in the probed mass range.

123

Golling et al, EPJC 84, 241(2024)

✦  Inclusive bump hunt — standard technique 
  for new particle searches at colliders: 
         split the distribution into SR and SBs 
         smooth interpolation provides fully 
         data-driven B in the SR 
         discovery significance via Poisson 

✦  How ML can enhance the bump? 
         multivariate bump hunt: looking for  
         correlated excesses in other features 
         (e.g. jet substructure, missing energy etc)
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Gluons + Fermions + Scalars (not explored yet)
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✦   Anomaly Score         — large for S, and small for B — must be uncorrelated with the mass
✦   Significance Improvement Characteristic (SIC) — how much the significance  

   is improved by a cut on         based upon how many S,B events survived:
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We want a ML technique that produces  
large SIC in a data-driven way

narrow sliding
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Side bands

Proof of concept: inject a small signal to simulated B, see how it shows up in SIC
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CWoLa Hunting

✦  For any S, the S-to-B likelihood ratio                     is an optimal S/B classifier! 
          how do we learn approximations to             using ML? 

✦  “Classification W/o Labels” (CWoLa) — train a classifier to learn SB vs SR to approximate  
   the ideal anomaly score                                  fully correlated with the ratio 
          if features     and the mass are uncorrelated in B, train a binary classifier to learn  
          using noisy labels SR (label 1) and SB (label 0) — weak supervision! 
          output: probability that a given    comes from SR
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What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)
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How can we evaluate anomaly score  
and improve discovery significance?
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Figure 8. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
mJJ ' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2⇥ 10�3.

forms: process and kinematic. Process correlations occur when Y depends on the production

channel (e.g. pp ! qq or pp ! gg) and mJJ also depends on the production channel;

kinematic correlations are the case when mJJ is correlated with Y given the process. Residual

process correlations do not cause bumps because the mJJ distribution of each process type

(aside from signal) is smoothly falling. Thus, even if the classifier can exactly pick out one

process, no bumps will be artificially sculpted. Residual kinematic correlations could cause

artificially bumps in the mJJ distribution. Physically, kinematic correlations occur because

Yi is correlated with pT,i. One way to show in data that residual kinematic correlations are

negligible is to use a mixed sample in which pairs of jets from di↵erent events are combined.

As long as the potential signal fraction is small, this mixed sample will have no resonance

peak. While the features chosen in this section were designed to be uncorrelated with mJJ

and not sculpt bumps, it may be possible to utilize correlated features in a modified CWoLa

hunting procedure that includes systematic uncertainties for strong residual correlations. We

leave studies of this possibility to future work.

We can investigate what the classifier has learnt by looking at the properties of events

which have been classified as signal-like. In the first (second) plot of Fig. 9, events in the

signal (sideband) region have been plotted on the plane of the jet masses of the heavier jet

(mJ,A) and the lighter jet (mJ,B). After being trained to discriminate the events of the
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resonance 
injection

Collins, Howe, Nachman, PRD 99, 014038 (2019) 
ATLAS search in real data: 2005.02983
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Anomaly detectors with correlation
What happens if features are correlated with mass?

✦  CWoLa stops working — becomes just a B-to-B classifier! 

✦  “Anomaly detection with density estimation” (ANODE)  
          no classifier, train conditional DEs (Normalising Flows) to learn SR and SB  
          densities conditioned on mass 

✦  “Classifying Anomalies thorough outer DE” (CATHODE)  
           combine best of CWoLa and ANODE: learn SB density in ANODE, interpolate  
           into SR, train a classifier on SR data in CWoLa — great performance! 

✦   CURTAINs method  
           instead of Normalising Flows, do invertible NN that learns to map SB to SB  
           using optimal transport loss 

✦   LaCATHODE method  
           using CATHODE in latent space 

✦   Methods using simulation with re-weighting:   
           SALAD   
           FETA 
           SA-CWola

Credit: David Shih

Nachman, Shih, PRD 101, 075042 (2020)

What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)
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Hallin et al, PRD 106, 055006 (2022)

Raine, Klein, Sengupta, Golling, Front. Big Data 6, 899345 (2023)

Hallin et al, PRD 107, 114012 (2023)

Andreassen, Nachman, Shih, PRD 101, 095004 (2020)

Golling, Klein, Mastandrea, Nachman, PRD 107, 096025 (2023)

Benkendorfer, Pottier, Nachman, PRD 104, 035003 (2021)



Anomaly detectors: performance
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Fig. 3 The 5-dimensional
feature space of dijet collision
events used in this resonant AD
study. We also show a 6th
feature, a mass-like event
variable that is used to define a
signal region (SR) and
sidebands regions (SB)

Fig. 4 Distributions of synthetic SM backgrounds generated by each method compared to data with nsig = 0

tion well. In particular, the ratios of marginals for all meth-
ods are all close to 1, which indicates that any differences
between the sample generation methods and truth cannot
be ascribed to a single observable. As a quantitative assess-
ment of the marginal distributions, in Table 3, we provide the
Kolmogorov-Smirnov (KS) test statistics for the marginal
distributions between each method and the truth. The KS
test statistic is defined as the supremum of the differences
between two distributions’ empirical cumulative distribution
functions, and can therefore provide a gauge of how different
two distributions are.

As a next test of the synthetic SM samples created by each
of the four generation methods, we analyze classifiers trained
to discriminate synthetic SM background from background-
only SM data, i.e. with a signal injection nsig = 0. Given that
there is no BSM signal present in the training data, differ-
ences in classifier performances come down to the “nature”
of the synthetic SM samples for each method. All of the
methods are given the same training and validation data sets,

so the statistical fluctuations from the input data should be
correlated between methods. Further, all of the binary classi-
fiers are evaluated with the same random seed, so the network
initializations should be identical in that respect. However,
there are differences stemming from the initialization of the
neural networks for each method, as well as from the differ-
ences of the methods themselves. These differences might be
expected to decorrelate the classifier scores.

We provide the receiver operating characteristic area-
under-the-curves (AUC) for such classifiers in Fig. 5. Also
plotted is the AUC spread derived from training a classifier to
discriminate truth from truth, which represents the spread of a
random classifier given the set of different network initializa-
tions and the fact that the network is not infinitely powerful.
The ROC spread of each individual method is consistent with
that of the spread of a random classifier, again providing evi-
dence that the nature of the synthetic samples is truth- (SM-)
like.

123

Synthetic data in 5D feature space + di-jet mass (SM B only)

✦  ML model building: LHC Olympics R&D data set - fully labeled
Pythia + Delphes: 13 TeV pp, leading jet 
SM background: QCD di-jets 
R&D signal: 
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Table 1 Many methods for constructing Standard Model background
templates for resonant anomaly detection can be classified on two axes:
on the horizontal, usage of an auxiliary dataset (simulation); on the
vertical, how non-signal region Standard Model background processes
are morphed into signal region Standard Model template samples

Simulation-assisted Data-exclusive

Likelihood learning Salad [17] (La)Cathode [22,24]

Feature morphing Feta [26] Curtains [27,35]

In recent years, there has been much work done on devel-
oping procedures to construct such synthetic SM samples.
While there now exist many varied methods for sample con-
struction, the vast majority2 of them can be characterized
based on two properties of their construction. First, genera-
tion methods can be data-exclusive or simulation-assisted:
data-exclusive methods generate synthetic samples by mak-
ing use of collider data from the SB mass regions, where the
data are far enough from any BSM signal to be treated as rep-
resentative of SM background; simulation-assisted methods
will also use an auxiliary dataset of simulated background-
only collisions. Second, generation methods exploit machine
learning techniques through either likelihood(-ratio) learn-
ing or feature morphing: methods can either learn the
likelihood(-ratio) of an SM-only dataset (this can be either
from the auxiliary simulated dataset or the SB data) and inter-
polate this likelihood into the SR; alternatively, methods can
morph features from said background-only regions into the
SR.

In this paper, we will consider the four methods shown in
Table 1, which span this “character space” of methods for
resonant AD.

We provide a brief summary of the four methods consid-
ered here.

• SALAD: Simulation Assisted Likelihood-free Anomaly
Detection [17] trains a binary classifier to discrimi-
nate simulated SM events from detected SM events in
the SB (background-only) region, then uses the classi-
fier to reweight simulated SM events in the SR. These
reweighted events comprise the synthetic SM samples.

• CATHODE: Classifying Anomalies THrough Outer
Density Estimation [22] trains a normalizing flow-based
probability density estimator to model detected data in
SB, then interpolates the distribution into the SR. A set
of events drawn from the interpolated distribution com-
prises the synthetic SM samples.

• CURTAINs: Constructing Unobserved Regions by Trans-
forming Adjacent INtervals [27,35] trains a normaliz-
ing flow-based transport function to morph detected data

2 The vast majority, but not all. For examples of methods that cannot
be so neatly classified on these two characters, see [19,21,33,34].

Fig. 2 Significance improvement characteristic for a binary classifier
trained to discriminate each synthetic background generation method’s
samples from signal-contaminated data. Below this signal injection
(nsig = 1500), methods perform less equally. For readability, we with-
hold a description of the classifier architectures and ensembling choices
until Sect. 2.3

between low- and high-mass SB, then applies the flow
to map from SB into the SR. These morphed samples
comprise the synthetic SM samples.

• FETA: Flow-Enhanced Transportation for Anomaly detec-
tion [26] trains a normalizing flow-based transport func-
tion to morph SM simulation in SB to detected data in
background-dominated SB, then applies the model to SM
simulation in the SR. These morphed samples comprise
the synthetic SM samples.

Our goal is then to explore how the synthetic SM sam-
ples generated by each of these methods perform in resonant
AD tasks, focusing on their relative performances in addi-
tion to their absolute performances. In fact, all four meth-
ods are comparable at picking up on signal contaminations
of ∼ 0.93% and above: in Fig. 2, we plot the significance
improvement characteristic (SIC) as a function of the sig-
nal efficiency. Broadly speaking, the SIC corresponds to the
multiplicative factor by which a signal significance would
improve by making a well-motivated cut on the data; a clas-
sifier that is ideally suited to discriminating signal from back-
ground would have a high SIC at all signal efficiencies.

2.2 Dataset

We use the LHC Olympics 2020 R&D dataset [11,36], which
consists of 1,000,000 background events comprised of QCD
dijet production, together with 100,000 signal events from
a Z ′ resonance at 3.5 TeV, decaying to scalars X and Y at
500 GeV and 100 GeV respectively, which then each decay
to quark pairs. Since the X and Y scalars are highly boosted,
their decay products are highly collimated and form large-
radius jets. For the main resonant feature, we use the dijet
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Fig. 12 Fractional overlap, with respect to a random-choice baseline, of the 5th percentile of events classified as the most “signal-like” between
different methods of synthetic SM sample generation, scanning over nsig

Fig. 13 Various metrics for a classifier trained to discriminate a com-
bination of FETA, CATHODE, and CURTAINs synthetic SM samples
from data over a range of nsig values. Errorbands show a 68-percentile

spread across the median and come from training a fivefold classifier
100 times with different random seeds, over 3 independent generative
model seeds, and ensembling scores over 10 runs

123
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Golling et al, EPJC 84, 241(2024)
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Simulation based inference
Data generation

36We do this all the time at the LHC!
Choose a good 1D summary statistic that is sensitive to the parameter

Make Histogram → Density estimation    ⟹   Estimate likelihood for inference

This is an example of Simulation Based Inference!

36We do this all the time at the LHC!
Choose a good 1D summary statistic that is sensitive to the parameter

Make Histogram → Density estimation    ⟹   Estimate likelihood for inference

This is an example of Simulation Based Inference!

Density estimation Likelihood for inference

What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)

Zhi-Wei Wang王志伟 (UESTC电子科技大学) PT and GW in Strongly Coupled DM 2024年6月1日 4 / 56

32Data Generation Process

O(108) detector elementsO(100) particlesO(10) particlesO(20) Fundamental 
physics parameters !

 !("|-')!(-'|-&)!(-&|#)

Detector Interaction

33Data Generation Process

O(108) detector elementsO(100) particlesO(10) particlesO(20) Fundamental 
physics parameters !

 ! " # = ∫ 1-	!("|-')!(-'|-&)!(-&|#)
MANY unobserved random processes (histories of how data came to be)

Only observe ; at end of the process → must integrate out unobserved stuff

unobserved random processes: 
mathematically intractable!

Given theory parameters - what detectors observe?

Image credit: Michael Kagan

28What is the likelihood at the LHC?

! 	 ) ?
100M detector elements SM / BSM parameters

Given the (B)SM theory parameters, what do the detectors read out?

in 1D we 
do this all 
the time!

This is extremely challenging in large d’s!
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Simulation based inference with ML

42Simulation-Based Inference with ML
Use simulator to train neural network to approximate likelihood, posterior, or 
likelihood ratio.  Then use neural net for inference on observed data

PNAS, 2020

Summary of different approaches: Cranmer, Brehmer, Louppe, PNAS 117, 30055 (2020)

Use simulator to train NN to approximate likelihood ratio (using classifier), likelihood or 
posterior (using Normalising Flow), then use NN to do parameter inference on observed data
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49Conditional Neural Posterior Density Estimation

Image credit: S. Mishra-Sharma

Image credit: S. Mishra-Sharma

Conditional neural posterior DE
Posterior conditioned on x

Normalising Flow

Feeding some info on x at each layer

a NN evaluates a smaller summary

of data x

random noise

Getting posterior distribution of model parameters 
for a given (simulated) data

Finally, evaluate the model on  
the measured data to get inference 
(e.g. confidence intervals)

Physics-informed NN architectures

may offer new ways to gain on 
efficiency of training and precision
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Summary

✦  ML is a new exciting research field that bridges Data Science, theoretical and  
   experimental physics together 

✦  ML is revolutionising research in Particle Physics and other data-intensive frontier fields 
   offering a huge improvement in precision and computational efficiency, and new applications 

✦  ML enables to hunt for subtle features in large and complex datasets and potentially to infer 
   the best fundamental physics model combining vast amounts of data from different 
   measurements and theoretical constraints 

✦  While New Physics remains elusive, ML offers new opportunities for future discoveries


