Search for New Physics
with Machine Learning

o »g.p&s, applications and recent progress
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Impressive performance of the Standard Model

Standard Model Production Cross Section Measurements

Status: February 2022

AQ total (x2)

0AO

inelastic

incl
pr > 100 GeV

pt >70 GeV

O

pt >75 GeV

O

dijets

o)

EY >

pr >100 GeV A\

2
25 GeV

The SM looks complete!

ATLAS Preliminary
Vs =5,7,8,13 TeV

Theory

LHC pp Vs =13 TeV

BEl  Daia 32- 13910

LHC pp Vs =8 TeV

| N A Data 20.2 — 20.3fb!
Ao v
pT>
30 GeV _
EY> EY> nj>1 n O LHC pp \/§_7TeV
125 GeV' 100 Gev -2 A
o © Ov wa BB Data 45-409f
pr > A a
nj>2 30 GeV (o} ww
VAl (o) ni>1 d—chan 'H W
e o) S T
nj =3 pt > Wt Wz D o total
i >D AO 1(,)1(_)2e1vnj22 AQ ‘leZ' VA Vg A
nj>4 O 0 pt > 25 GeV ZAZ zz ih o v
n =3 A S, =3 njé4 A o VN Wy
an 5 JD o njzos s-chan H_;ggv‘g)/v* A n o
A n>4 R Ag O WWW tot.
O nji)s i O zy 8 O
ni>6 _ A D - D
J = nj=3 H—bb A tiz Wi
A n>5 nj>7 H- 1t HoWW* | (x0.5) A WWZ tot. ¢
(x0.25) ttw= & A &) Bg
..
A nj=4 n;>6 "R 7 o N Hzz o 0 a
= D Hoyy Hoer Zjj n
njz7 (x0.15) A Wyy total
> nj=>5
I7_I—7 I u n A A D A Wew
ﬂ H— yy H—yy D
O N (x05) n Zyy S
nj>6 b n A n
k ? H—yy DWZ
c Y ee P o n ° WWy A
PP Jets ¥ W z tt  t W ¥ H  Hi VH Vy v tiH  Wwv 7y VA yyj

tt’}/ ij tEtE EWKyy—)WW

tot. tot. VBF tot. EWK tot. EWK



. ) . v . ) . - “e . Y
4 * - Nl 1 : : * " = iy : _ Neutrino
@g\exptauwea( , Fihenomama: ' ,’ masseo | [N

. Hierarchies
T - ) 75 TN s ' ans Baryon
‘ . . S asymmetry
_ge 'DQT‘M Ma&&ar Tl o s el N
®. Ma&&ewam&ma&&ev a\symm&rj .
ight Higgs
o Dark. Ewergsj Vi, e
. & ; 5 . Dark matter
e o . ) * / o '. e ’ CP violation
. . | o . ‘ = e '
. - ’ ¢ . . LA s . . . < : : . 4 . : '
i, VR S : Umsa&s{a}{:ﬁor'j s&ru«t‘&wre of the Sm:
' . o .°‘. ¢

- o .. i ® Hberar&kv P‘T‘Obi@.mg (.HLQSS, “{LO\VOMT}O *
- . e Naturalhness. 4. i o a Y
,. .*_ ‘.,. e Q%a\m&um Grav&j .se-&c,* |

.
?LQE&?T‘O\ o&B@jovxol E?;Q SM &heomes &0 %as& ;\gamsﬁ da&a

NASA, ESA,AND THE HUBBLE HERITAGE TEAM (STSCI/AURA)




Goals of Particle Physics

« Explore physics at the highest energy scale (TeV scale at the LHC)

- search of new Higgs scalars ( = Higgs "partners”)
- search for low-energy traces of supersymmetry (SUSY)
- investigate various scenarios of physics beyond the SM

* Precision measurements of SM processes:

- test nontrivial predictions of the SM, including very rare processes

- search for deviations from the SM sensitive to new physics at high scales

- improve precision of the SM parameter measurements

- study the Higgs boson and the EWSB sector

- study QCD dynamics and parton content of the proton

- QCD/MC tools development

- exploit the SM measurements as “Standard Candles” to tune and test
detector performance



Emerging anomalies in collider data

Crivellin, Mellado, Nature Reviews Physics 6, 294 (2024)

Standard Model New Physics Standard Model New Physics
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Why ML is relevant for Particle Physics

Karagiorgi, Kasieczka, Kravitz, Nachman, Shih, arXiv:2112.03769

Microscopic physics
(particle interactions,
scattering...)

s Large-distance phenomena

> o —>  Detector response
(hadronisation, propagation, jets...)

Particle physics
experiments produce enormous
datasets of high complexity!

ML is a powerful new tool that
enables us to get more physics
out of these big datasets

We live in a very special point of history
similar to invention of a telescope

ML would enable us to see features we could not see before — “telescope” for Big Data! .



What ML can do for particle physicists

What we could
do before,

but ML does
better job

What we could

not do before,
but ML makes
it possible
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Mehta et al, Phys. Rept. 810, 1-124 (2019)
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Biggest advantages of ML

+ 4+ ¢+ 4+

greatly enhanced sensitivity/precision [x10-100]

accelerated simulation [e.g. fast simulation]

accelerated/efficient extraction of physics [inference]

ML is cross-disciplinary [same methods can be used in many fields]

ML is not only for experimentalists - theorists use “simulated data” a lot!
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Learning from data

Example: feed-forward NN (MLP)

ML = sophisticated curve fitting! Hidden Layers

+

+

the data instances 7; C R“ 1=1...N
are considered to be drawn i.i.d. from some data
distribution pgata ()

often we are interested to “learn” a function f(x,0)
from the data for some parameters (e.g. weights, biases) §
—> Neural Network, or made up of NNs, or smth else...

Neural Networks Architecture

the learning process (e.g. NN training) is optimisation of an objective (loss function)

L(O) =) L[f(x,0)]

supervised learning [regression or classification] — we want f(z, ) to take a specific form
e.g. binary classification f(z;,0) = y; for truth labels y;, = 1 or 0 (QCD jets vs top jets)

the objective is to get as close to the truth labels as possible e.g. minimise the mean squared

error (MSE) loss L= (f(7,0) — y)

4 Truth labels often come from simulation, or when categorisation of the data is obvious

e.g. hand-labelled data (cat vs dog, natural images etc)



Less than supervised

Data often come from experiments (e.g. LHC) without truth labels (non
human interpretable) while simulations are not perfect -> What to do?

4 in Particle Physics the data is very complex and not clearly separable into categories
—> large overlap in their distributions

4 Unsupervised learning — no labels available at all — data-driven/simulation-free approach!
—> uncovering hidden patterns, structures or relationships in the data
—> Examples: clustering similar data points, reducing dimensionality for visualisation

4 “Noisy” labels: weakly supervised learning — a powerful tool in New Physics searches:
—> data-derived labels that correlate with a given category [e.g. signal S vs background B]
but may not be EXACTLY in that category
—> Splitting the data into “signal region” [S-enriched] + “control region” [B-enriched],
a generative model is applied for anomaly detection

4 A mix of labelled and unlabelled data: semi-supervised learning
—> simulation+data to mitigate the simulation effects, or when parts cannot be labeled

4 Data-driven methods to learn the objective: self-supervised learning — by using symmetries
or deleting parts of the data and trying to fill that in [relevant in Large Language Models]
—> useful for learning embeddings (e.g. using data-derived labels on jets related or not

related by rotation, one learns a jet representation encoding the symmetry)
10



Generative ML
Can we generate more samples that follow the same distribution as the data?

4+ We want to learn the data probability distribution pgata() [density estimation] and
then sample from it — often, a very difficult task!

=> we can learn to sample from Ddata(Z) without actually learning this function

4+ Generative modelling — to learn Pmodel(7) as close as possible to Pdata(7) and then sample

to generate (dream up) synthetic data capturing underlying patterns of the original dataset
data

synthetic data
sampled from

Methods of generative ML

Pmodel (T) —> Generative Adversarial Networks (GANs)

learnt explicitly —> Variational Autoencoders (VAE)
or metitif:i.j

—> Normalising Flows
z C Rn ~ pnoise(z)

—> Diffusion Models
bypically, a simple distribution Like N(0,1)"

Common applications in Particle Physics:

4+ fast simulation e.g. “surrogate” modelling (training on few samples to generate
more), phase space sampling (integrations)

4+ anomaly detection — outliers (clean up data), group anomalies (bumps from NP)
4+ simulation based inference e.g. EFT fits y



Autoencoders

4 AE maps data back to itself through reduced latent space trying to figure out a latent
representation of the data that captures its essential features
information bottleneck Data-driven

' compression

data-to-data mapping (no labels

original data set

svn&ha&&c daka set
d
x C R ~ pdata(x)

SC, C Rd ~ pmodel(x/)

Simplest loss function:

! L=ljz—a|f

-----~
I == = = = = = = = = =

Good for triggering/fast simulation +

‘“encoder” ‘“decoder”

I”

4 AE trained on “normal” events as an “anomaly detector” [only outliers, not overdensity]
—> an outlier causes the loss to have a “cluster” at large values
—> anomalies may be separated in the latent space — compression enhances clustering

BUT no guarantee that AE learns sensible latent space [no probabilistic interpretation]

. . . Farina, Nakai, Shih, PRD 101, 075021 (2020)
4 Simulation-based AE for New Physics search Heimel et al, SciPost Phys. 6, 030 (2019)

—> take simulated jet images as data: QCD jets as B and NP jets as S (anomaly)
—> if Sis rare, AE separates the anomaly well (in the tail of the loss)

4 AE as a “complexity detector”  Finke et al, JHEP 06, 161 (2021)

—> train on QCD jets, finds top jets, BUT train on top jets, does not find QCD jets -



Variational Autoencoders

Can we enforce the latent space to have a suitable probabilistic interpretation?

4 VAE as a latent variable model: z ~ p(z) (the “prior”) while = ~ py(x|2) we get a set {z;, 2;}
drawn from p(x, z) — by integrating out 2 we get data distribution py(z)

4 To determine the conditional probability pg(x|2) — learn it by maximising the maximum

likelihood estimation (MLE) w.r.t NN parameters 6 “decoder”

\

MLE = Z logpg(x)  with Bayesian evidence po(z) = /pe(ﬂ?\z)p(z)dz hard!

T~Pdata(T) “encoder”

\/

4 Variational “posterior” 1y (2|x) — still samples z-space but differently depending on x

4 Utilising MC sampling of the integral from the posterior and applying Jensen inequality:

Kullback-Leibler divergence

= logpg(x) — KL(ry(2|7)||pe(z]z)) “evidemce Lower bound” (ELBO)

log pg( Z £x|(z)‘p(z)

zwrw(z|x Y& CC)

true posterior for a given ()

4+ Taking normal distribution pg(z|z) = N(ue(2), )

VAE as a “regularised” vanilla AE
} — KL(ry(2]2)|[p(2))  with a“smoothing” KL-term
(posterior tends to the prior)

I

|z — po(2)
N BELBO = £, la) [ R
aximised!

reconstruction error of vanilla AE 13



Normalising Flows
Papamakarios at al,

Invertible map between the data and latent spaces J. ML Res., 22(57) 1, 2021

4 We can achieve both — get the latent space z and do density estimation (DE)

z = f([L‘) 0) ﬁ T = Jl)_l(z7 8) Optimisation Pr'ObIem:
df to fit parameters ¢/
p(z) — pg(x) = p(Z) detd— to the data
Z

4 We directly optimise the negative-log likelihood [tends to perform better than VAE]

best model that generalises best to the

L =— Z log pe (.CC) unseen best sek

4 Trade off: more ambitious/challenging, bad scaling with dimensions;
—> Jacobian of d x d matrix takes O(d”) operations repeated many times

4 A small family of invertible functions with upper-triangular matrices: O(d) operations!
—> “autoregressive transformation” 2z, = fi(z1), 2= fo(z1,22), ... 2z, = folz1...2,)

4 To gain on expressivity [= having enough parameters to learn the transform], one can chain
multiple such transforms, permute between them —
—> Masked Autoregressive Flow (MAF):  z; = a;(x1,..2i—1,0)2; + pi(21..7i-1, 0) where
the coefficients can be thought as outputs of one big NN (slow sampling)
—> Inverse Autoregressive Flow (IAF): inverse algorithm (slow training)

4 “Density distillation”: first train the MAF then distill it into an IAF [fit IAF to MAF]

14



Resonant anomaly detection: SIC

Golling et al, EPJC 84, 241(2024)
How we use ML in searches for new phenomena in Particle Physics?

4 Assume S is localised (resonant) in some feature (typically, invariant mass) and B is smooth

. 4 Inclusive bump hunt — standard technique
o for new particle searches at colliders:
narrow sliding —> split the distribution into SR and SBs
signal region ! —> smooth interpolation provides fully
data-driven B in the SR
—> discovery significance via Poisson ¢ =

Side bands

S

4 How ML can enhance the bump!?
—> multivariate bump hunt: looking for
SR : SB m correlated excesses in other features *

| Pasia(z|m € SB) (e.g. jet substructure, missing energy etc)
= Ppg(z|m € SB)

SB

pdata(x|m = SB)

— poylzjm e 5B) Paaal@im & SE)

4 Anomaly Score R(x) — large for S, and small for B — must be uncorrelated with the mass
4 Significance Improvement Characteristic (SIC) — how much the significance
is improved by a cut on R(z) based upon how many S,B events survived:

€s , We want a ML techinique that produces
SIC = NG for cut efficiencies €s,B 1 P
B

Proof of concept: inject a small signal to simulated B, see how it shows up in SIC

large SIC in a data-driven way

15



CWolLa Hunting

How can we evaluate anomaly score Collins, Howe, Nachman, PRD 99, 014038 (2019)
o . o o oo ATLAS h ] L data: 2005.02983
and improve discovery significance? SEATEn A rEan A

4 For any S, the S-to-B likelihood ratio ps(x)/ps(z) is an optimal S/B classifier!

—> how do we learn approximations to psp(x) using ML?

4 “Classification W/o Labels” (CWola) — train a classifier to learn SB vs SR to approximate

Events / 100 GeV

the ideal anomaly score Rigeal = Pdata(2)/pa(x) fully correlated with the ratio ps(x)/pp(7)

—> if features ' and the mass are uncorrelated in B, train a binary classifier to learn R(x)
using noisy labels SR (label 1) and SB (label 0) — weak supervision!

—> output: probability that a given ©* comes from SR

psr(T) R(x)
Bajes' theorem: p(SR|$) — — e R(x)
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Anomaly detectors with correlation
What happens if features are correlated with mass?

4 CWola stops working — becomes just a B-to-B classifier!

4 “Anomaly detection with density estimation” (ANODE) Nachman, Shih, PRD 101, 075042 (2020)
—> no classifier, train conditional DEs (Normalising Flows) to learn SR and SB
densities conditioned on mass

4 “Classifying Anomalies thorough outer DE” (CATHODE) Hallin et al, PRD 106, 055006 (2022)

combine best of CWolLa and ANODE: learn SB density in ANODE, interpolate
into SR, train a classifier on SR data in CWolLa — great performance!

4 CURTAINs method Raine, Klein, Sengupta, Golling, Front. Big Data 6, 899345 (2023)
instead of Normalising Flows, do invertible NN that learns to map SB to SB
using optimal transport loss

4 LaCATHODE method Hallin et al, PRD 107, 114012 (2023)
using CATHODE in latent space

4 Methods using simulation with re-weighting:
SALAD Andreassen, Nachman, Shih, PRD 101, 095004 (2020)

FETA Golling, Klein, Mastandrea, Nachman, PRD 107, 096025 (2023)

SA-CWola Benkendorfer, Pottier, Nachman, PRD 104, 035003 (2021)
Credit: David Shih 17



Significance Improvement Characteristic

e}

Anomaly detectors: performance

SM background: QCD di-jets
RE&ED signal: pp — Z' = X(—= jj)+Y (= jj)
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Golling et al, EPJC 84, 241(2024)

4 ML model building: LHC Olympics R&D data set - fully labeled
Pythia + Delphes: 13 TeV pp, leading jet pr > 1.2 TeV
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Simulation based inference

Data generation Given theory parameters - what detectors observe?

O(2Q) Fundamental O(10) particles O(100) particles O(108) detector elements
physics parameters 0

unobserved random processes:

- ) ? p(x|0) = [ dz p(x|zn)p (21 |2p)0(2p|0) mathematically intractable!

Density estimation Likelihood for inference
> 180 :]_I TT | TTTT I | 3F J Bt [ TTTT I TTTT | TTTT | TTTT | | x| 2= g | l TT IJ_: —_ I T T
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This is extremely challenging in large d’!

O ggF [Pb]

Image credit: Michael Kagan 19



Simulation based inference with ML

Summary of different approaches; Cranmer, Brehmer, Louppe, PNAS 117, 30055 (2020)

Approximate Bayesian Computation Approximate Bayesian Computation Probabilistic Programming Probabilistic Programming
with Monte Carlo sampling with learned summary statistics with Monte Carlo sampling with Inference Compilation

p"—'or %prlor e proposal
8,z 0,z
8 Y 9, z X
o augmented
» proposal proposal { data } proposal
S
0 6,2 X 6,z %
A\
simulator | X’ [ summary augmented
statistics simulator compare
’ \{
Yy 8, z
compare importance prior
sampling
Y
B D posterior

Amortized surrogates

Amortized likelihood Amortized posterior Amortized likelihood ratio trained with augmented data
proposal [e------------------- | ‘ prior ‘ proposal |e---------------o-ooy proposal  [e------cmmeooomoey
0 ‘ 9
simulator au'gmented
| sinulslol
' X IX, t(x,2), r(x,2)
0

approximate
likelihood
ratio

optional active learning

| X |
| data : [ prior
confidence

confidence : - ; confidence : :
s ] [postenor} | F G{ Sets ’ {postenor ---------- ] H [ i J [postenor

________________________________________

Use simulator to krainn NN ko approxima&e Likelihood ratio (using classifier), Llikelihood or
posterior (using Normalising Flow), then use NN to do parameter inference on observed data 20



Conditional neural posterior DE

Getting posterior distribution of model parameters
for a given (simulated) data

Posterior conditioned on x

© Conditional flow transformation 6@ = f¢(u) 5%
N | » S Fs
= aal o -IS
HO £ £ £H | N
5 & 7% S 8
s ™ | o © o o d kS Po
2 ‘ g
@ @ e | 8 ‘ ‘
Feeding some info on x at each layer 2
L
0 ~ p(0) T
S Finally, evaluate the model on
X the measured data to qet inference
} e SCD(x) (e.a. confidence inkervals)

|
}‘ﬂ b | _*%éc%% Optimized simultaneously:

ﬂ o o
e Feature extractor s
Feature 7

extractor e Flow transformation f,

o NN evaluakes a smaller summary

of data x
Physics-informed NN architectures

may offer new ways to gain on
Image credit: S. Mishra-Sharma eﬁéci&hav c;:r-f training and Precisiov\ 21



Summary

4 ML is a new exciting research field that bridges Data Science, theoretical and
experimental physics together

4 ML is revolutionising research in Particle Physics and other data-intensive frontier fields
offering a huge improvement in precision and computational efficiency, and new applications

4 ML enables to hunt for subtle features in large and complex datasets and potentially to infer
the best fundamental physics model combining vast amounts of data from different

measurements and theoretical constraints

4 While New Physics remains elusive, ML offers new opportunities for future discoveries

22



