
⊚ Monoids & Time ⏲
Embracing asynchrony
in (graph) neural nets

HAMLET-Physics
University of Copenhagen
20 August 2024

Petar Veličković
Staff Research Scientist, Google DeepMind
Affiliated Lecturer, University of Cambridge

In this talk:
(Classical) Computation

and how to capture it with neural nets

In this talk:
(Classical) Computation

and how to capture it with neural nets

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

In this talk:
(Classical) Computation

and how to capture it with neural nets

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

What I want:
Robust reasoning in neural nets

The key aim is reasoning

What does reasoning mean to our team at GDM?

● Robust procedure for solving instances of a problem

● It needn’t be fully accurate (human reasoning is often approximate!)

● It needn’t be symbolic (may be done purely or partially in latent space)

● But it should behave consistently across all problem instances

⇒ We care about OOD generalisation
○ A model that truly captures the reasoning concept of multiplication

should work equally well on all instances of multiplication problems…

Even our best models do not extrapolate well

#digits 1 2 3 4 5

1 1.00 1.00 1.00 1.00 1.00

2 1.00 0.99 0.80 0.55 0.40

3 1.00 0.79 0.37 0.11 0.04

4 1.00 0.63 0.14 0.02 0.02

5 0.97 0.41 0.07 0.03 0.00

Table 1. Accuracy of Gemini Ultra on multiplications.
Prompt: “What is $a * $b?”
(very similar trends for GPT-4; see Shen et al. (2023))

Transformers compute billions of multiplications just to generate a
single token; yet, they cannot multiply 3-by-3-digit numbers correctly.

The key aim is reasoning

What does reasoning mean to our team at GDM?

● Robust procedure for solving instances of a problem

● It needn’t be fully accurate (human reasoning is often approximate!)

● It needn’t be symbolic (may be done purely or partially in latent space)

● But it should behave consistently across all problem instances

⇒ We care about OOD generalisation
○ A model that truly captures the reasoning concept of multiplication

should work equally well on all instances of multiplication problems…

Further, we want to do this in a way that scales easily to XXXB-parameters

tl;dr: data & tools are not enough.

We (likely) need to change the
model equations to capture
computation better
First, we need to cover some preliminaries.

Evals: How can we evaluate OOD generalisation?

Most popular existing benchmarks unsuitable due to distribution leakage

We need to take tasks for which we can generate outputs:
● Reliably
● Efficiently
● For any distribution of interest

This, by definition, implies we need (polynomial-time) algorithms

The CLRS-30 Benchmark (ICML’22)

The CLRS-30 Benchmark (ICML’22)

CLRS-30 is not just a dataset;
it is a dataset & baseline generator!

https://github.com/google-deepmind/clrs

The CLRS-Text Benchmark (ICML’24 DMLR)

Recently: bringing CLRS-30 into the LLM age!

https://github.com/google-deepmind/clrs/tree/master/clrs/_src/clrs_text

Models: Preliminaries on graph neural networks

Models: Preliminaries on graph neural networks

Message function

Models: Preliminaries on graph neural networks

The aggregation function, ⨁, needs to be permutation invariant (e.g. sum, max, average)

Message function

Aggregation function

(a choice of monoid structure on ℝm)

Models: Preliminaries on graph neural networks

Message and update functions are the only parametric components of a GNN

Message function

Aggregation function

Update function

Models: Preliminaries on graph neural networks

e.g. can be a single-layer NNs:
with parameters optimised using gradient descent.

Message function

Aggregation function

Update function

For more information on GNNs…

What I do:
Playing the alignment game

Key concept: algorithmic alignment

So far, our approaches have modified:

To align GNNs with computation…

So far, our approaches have modified:
● The parametric functions of the GNN

To align GNNs with computation…
IterGNN, Tang et al.,
(NeurIPS’20) forces the
parametric functions to
be homogeneous

So far, our approaches have modified:
● The parametric functions of the GNN
● The aggregation function of the GNN

To align GNNs with computation…
Veličković et al. (ICLR’20):
Just set ⨁ = max!

So far, our approaches have modified:
● The parametric functions of the GNN
● The aggregation function of the GNN
● The features going into the GNN

To align GNNs with computation…
n-body physics (Battaglia
et al., NeurIPS’16)
Forces follow an inverse
square law – transform
the distance features!

So far, our approaches have modified:
● The parametric functions of the GNN
● The aggregation function of the GNN
● The features going into the GNN
● The computation graph over which the GNN operates

To align GNNs with computation…
PGN (Veličković et al.,
NeurIPS’20)
Align edges to a data
structure for improved
time complexity!

So far, our approaches have modified:
● The parametric functions of the GNN
● The aggregation function of the GNN
● The features going into the GNN
● The computation graph over which the GNN operates

… what else even is there to do???

To align GNNs with computation…

So far, our approaches have modified:
● The parametric functions of the GNN
● The aggregation function of the GNN
● The features going into the GNN
● The computation graph over which the GNN operates

An important point is missing, and it was not even in the equation…
the clock ⏲ which synchronises the message passing mechanism

Recap

What I am betting on:
Reconciling (G)NNs with
⏳ Asynchrony ⌛

Asynchrony ⏲, the next frontier!

● As we discussed at the beginning, GNNs/Transformers tend to struggle when asked to
reason, especially over very long trajectories, especially out-of-distribution

● Reasoning: executing a robust procedure for solving instances of a problem

● Here we hit a roadblock to long-range generalisation: most problem-solving techniques are
asynchronous—only a handful of variables can be meaningfully updated at each step.

● This is a topological constraint of the problem—not a limitation of aligning to algorithms!

Asynchrony ⏲, the next frontier!

● Here we hit a roadblock to long-range generalisation: most problem-solving techniques are
asynchronous—only a handful of variables can be meaningfully updated at each step.

● This is a topological constraint of the problem—not a limitation of aligning to algorithms!
○ If you update a node when you shouldn’t, it is opportunistic & prone to failures

● Yet, our models are synchronous: update all node/token states, everywhere, all the time

● Think about the message / update functions such a model needs to learn to generalise!

○ Identity-like for most nodes… but highly complex in others.

How to reconcile (G)NNs with asynchrony?

Parallel Algorithmic Alignment

Learn to execute parallel algorithms whenever possible!
Engelmayer, Georgiev, Veličković (LoG’23)

Elegant, scalable and theoretically sound! But not always possible :(

How to reconcile (G)NNs with asynchrony?

Cooperative GNNs

Nodes decide whether to listen or broadcast
Finkelshtein et al. (ICML’24)

Asynchronous GNNs

Exchange and react to individual messages
Faber and Wattenhofer (LoG’23)

Directly solves the problem! But hard to scale on modern hardware, with many discrete decisions

How to reconcile (G)NNs with asynchrony?

Asynchronous Algorithmic Alignment

Design synchronous GNNs that are provably invariant under various forms of asynchrony
Dudzik, von Glehn, Pascanu, Veličković (LoG’23)

Hits a sweet spot between soundness, scalability, and feasibility!

What we developed:
Asynchronous
Algorithmic Alignment

The general strategy towards asynchronous alignment

● Assume that our target algorithm supports certain kinds of asynchrony
○ e.g. variable updates can be processed in arbitrary order, without affecting the result

● Our strategy is to describe several levels of asynchronous alignment

● At each level, we will remove certain synchronisation points from the GNN

● Their removal, while maintaining invariance, will invoke a constraint on the GNN’s modules

● Satisfying these constraints will induce asynchronous algorithmic alignment to algorithms
supporting the same level of asynchrony

The synchronisation points of GNNs

Need to block on all messages arriving before
invoking the aggregator and update

Need to block on the update function before
invoking the message function

What we need to describe

● There are three types of data at play here:
○ The set of messages,
○ The set of node states, [which change as a result of receiving messages]
○ The set of node arguments, [inputs to the message function]

[in practice, often]

What we need to describe

● There are three types of data at play here:
○ The set of messages,
○ The set of node states, [which change as a result of receiving messages]
○ The set of node arguments, [inputs to the message function]

● Further, we will assume that both and admit a monoid ⊚ structure
○ Monoids are “groups without inverses”: a great abstraction to study computation
○ There exist exact correspondences between monoid actions and state machines
○ In essence, we assume both messages and arguments can be iteratively assembled

What we need to describe

● There are three types of data at play here:
○ The set of messages,
○ The set of node states, [which change as a result of receiving messages]
○ The set of node arguments, [inputs to the message function]

● Further, we will assume that both and admit a monoid ⊚ structure

● We will write these two monoids as and
[The operators and neutral elements are chosen just for distinguishability; they may be identical.]

A single (potentially aggregated) message then transforms the state and emits an argument

Level 1 of asynchronous alignment

● First, note that our message monoid in GNNs is

● To make the aggregation order irrelevant, we only need this monoid to be commutative:

● Then, messages can be aggregated as soon as they arrive, without synchronisation

● Most (if not all) GNNs use a commutative monoid for their aggregator!
○ See LCM (Ong and Veličković, LoG’22) for more details.

Level 1 of asynchronous alignment

Message monoid actions

● We are interested in the effect of multiple messages arriving
○ Asynchrony would imply we can let those messages either act separately, or

simultaneously, and still achieve the same result in both

● Forcing our transformations to be monoid actions induces a form of asynchrony invariance

Message monoid actions

● We are interested in the effect of multiple messages arriving
○ Asynchrony would imply we can let those messages either act separately, or

simultaneously, and still achieve the same result in both

● Forcing our transformations to be monoid actions induces a form of asynchrony invariance

● For state transformations, we would require:

1. neutral message does not change state, and
2. we can either transform state by two messages separately, or first compose them and

transform once – the resulting state is the same

In GNNs

● These conditions transfer to the following GNN update function conditions:

● Then, messages can trigger updates as soon as they arrive, without synchronisation

● One simple way to satisfy this is to set and rely on the associativity of

● For argument emission, we would require:

1. neutral message emits neutral argument, and
2. we can either compose two messages and emit an argument, or emit one argument from the

first message, then emit a second argument from the transformed state by the second
message, and combine the two emitted arguments – the resulting argument is the same

This condition is known under many names in mathematics:
1-cocycles, derivations, and crossed homomorphisms

Message monoid actions

● Assuming an argument monoid of this translates into following constraints:

● Then, messages can emit partial arguments as soon as they arrive, without synchronisation

● If and , it is sufficient to make the update idempotent to satisfy this.
○ Combining with the previous rule, we can set, e.g.,

Message monoid actions

Level 2 of asynchronous alignment

Message computations

● Once argument(s) are computed, they can be used to produce new messages
○ This is a stateless monoid transformation, as edges don’t keep persistent state
○ (If they did, our framework would treat them as nodes anyway!)

● Assume the specific case of single-argument messages ().

● The conditions for making a 1-cocycle amount to making it a monoid homomorphism:

1. neutral argument produces neutral message, and
2. we can either produce a single message from combining two arguments, or produce one

message from each argument, and then compose them – the resulting message is the same

Message computations

● Once argument(s) are computed, they can be used to produce new messages
○ This is a stateless monoid transformation, as edges don’t keep persistent state
○ (If they did, our framework would treat them as nodes anyway!)

● Assume the specific case of single-argument messages ().

● The conditions for making a 1-cocycle amount to making it a monoid homomorphism:

This generalises to messages produced from multiple arguments,
we’d need to be a monoid multimorphism for it to be a 1-cocycle
(if we keep k - 1 arguments fixed, it needs to be a monoid homomorphism in the remaining one)

Message computations

● If we follow all our prior assumptions, this translates into the following constraints:

● Then, messages can be sent whenever arguments are updated, without synchronisation

● To satisfy this, we can make the message function a tropical linear layer in the max-semiring
○ Matrix multiplication with a weight matrix, but changing times to plus, and plus to max
○ Can obtain a multimorphism via a tropical multilinear layer

Level 3 of asynchronous alignment

Level 3 of asynchronous alignment

● It’s worthy to take a step back and see what the “tropical linear” layer does!

● It is well-known we can express shortest path-finding algorithms as repeated matrix-vector
multiplication of the distance matrix with node distances, in the max-plus semiring.

● Here, we are multiplying a weight matrix with high-dimensional vectors in every node

● Hence, we can imagine such a layer as solving several path-finding problems in parallel
○ Each starting from different initial distance conditions

● Issue: we have quadratically many parameters, but only linearly many will receive gradients!

○ As a quick fix: use the logsumexp semiring instead, as a smooth approximation.

Ascending this ladder improves OOD execution capability

Want to know more?

Want to know more? (NAR side)
There’s a lot of stuff I didn’t have time for today.
Want to learn more? Detailed list of references?

Check our LoG’22 Tutorial!

algo-reasoning.github.io

Want to know more? (CO side)

For the CO practitioners in the audience:

Our 61-page survey on GNNs for CO!

https://arxiv.org/abs/2102.09544

(JMLR’23)

Section 3.3. details algorithmic reasoning,
with comprehensive references.

https://arxiv.org/abs/2102.09544

Want to know more? (CDL side)

The idea of removing constraints from groups to
analyse neural networks is a hint at a much richer
picture, based on category theory

We recently wrote a paper outlining this picture:

categoricaldeeplearning.com

and feedback is very much welcome!

As a bonus: we can rediscover 1-cocycle conditions
using the gadgets proposed in CDL (see Appendix).

Want to know more? (CDL side)

The idea of removing constraints from groups to
analyse neural networks is a hint at a much richer
picture, based on category theory

We recently wrote a paper outlining this picture:

categoricaldeeplearning.com

and feedback is very much welcome!

As a bonus: we can rediscover 1-cocycle conditions
using the gadgets proposed in CDL (see Appendix).

Meme credits go to Michael Galkin, as always :)

Thank you.
Petar Veličković
petarv@google.com
https://petar-v.com

With many thanks to Andrew Dudzik, Tamara von Glehn and Razvan Pascanu

