Google DeepMind

® Monoids & Time

Embracing asynchrony
in (graph) neural nets

HAMLET-Physics

In this talk:
(Classical) Computation

MERGE-SORT (4, p, 1)

1 ifp<r
VEB(u) ul:l min|:| ma.xD 2 q = I_(p _|_r)/2J
01 23 oo Yu—1 3 MERGE-SORT (A, p,q)
summaryﬁ cluster| || [[[]]] 4 MERGE-SORT(A,q + 1,r)
i 5 MERGE(A4, p,q,r)
YYYYYYYY i 01 2 3 4 5 6
vEB({/u) i y, D © 4 ® @
/u vEB(Y/u) trees
0 x| ol ol ol of o]l o] 0
toa ol o4 (T)\lHl\l
2 @ 0\1<—1H1 1Nl
N IR o BE
4 @ 0\1 I ; ;\34—3
5 D o 1\2 ; ; ; g
s ®| o 1| I I §\4
75 | o[ol 3 Al
t 5 X

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

MERGE-SORT (4, p, 1)

1 ifp<r
vEB(u) uI:l minD ma.xD @ 2 q=|(p+r)/2]
01 2 3 .. Yu—-1 .‘ 3 MERGE-SORT(A4, p,q)
summaryﬁ cluster’ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘) > 4 4 MERGE—SORT(A, q+1, 7')
! | 5 MERGE(A, p,q,r)
¢ YYYYYYYY ' €

vEB(1/u)

/u vEB(Y/u) trees

in this talk:
(Classmal) Computation

st and how to capture it with neural nets
H.min
Y
?@) (7) (3]
52 38

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

What | want:
Robust reasoning in neural nets

The key aim is reasoning

What does reasoning mean to our team at GDM?
e Robust procedure for solving instances of a problem
e It needn’t be fully accurate (human reasoning is often approximate!)
e It needn’t be symbolic (may be done purely or partially in latent space)
e But it should behave consistently across all problem instances
= We care about OOD generalisation

o A model that truly captures the reasoning concept of multiplication
should work equally well on all instances of multiplication problems...

Even our best models do not extrapolate well

Transformers compute billions of multiplications just to generate a
single token; yet, they cannot multiply 3-by-3-digit numbers correctly.

#digits 1 2 3 4 5
1 1.00 1.00 1.00 1.00 1.00
2 1.00 0.99 0.80 0.55 0.40

1.00 0.79 on 0.04

1.00 0.63 0.14 0.02 0.02

g b W

0.97 0.41 0.07 0.03 0.00

Table 1. Accuracy of Gemini Ultra on multiplications.
Prompt: “What is $a * $b?”
(very similar trends for GPT-4; see Shen et al. (2023))

The key aim is reasoning

What does reasoning mean to our team at GDM?
e Robust procedure for solving instances of a problem
e It needn’t be fully accurate (human reasoning is often approximate!)
e It needn’t be symbolic (may be done purely or partially in latent space)
e But it should behave consistently across all problem instances
= We care about OOD generalisation
o A model that truly captures the reasoning concept of multiplication

should work equally well on all instances of multiplication problems...

Further, we want to do this in a way that scales easily to XXXB-parameters

tl;dr: data & tools are not enough.

We (likely) need to change the
model equations to capture
computation better

First, we need to cover some preliminaries.

Evals: How can we evaluate OOD generalisation?

Most popular existing benchmarks unsuitable due to distribution leakage

We need to take tasks for which we can generate outputs:
e Reliably
e Efficiently
e For any distribution of interest

This, by definition, implies we need (polynomial-time) algorithms

)

v
)

The CLRS-30 Benchmark (ICML'22)
) Z A

‘ [RONALD L. RIVEST

CLIFFORD STEIN

\,‘ —
Y Y

INTRODUCTION TO

ALGORITHMS
a0 cormion |

Sorting: Insertion sort, bubble sort, heapsort (Williams,
1964), quicksort (Hoare, 1962).

Searching: Minimum, binary search, quickselect (Hoare,
1961).

Divide and Conquer (D&C): Maximum subarray
(Kadane’s variant (Bentley, 1984)).

Greedy: Activity selection (Gavril, 1972), task scheduling
(Lawler, 1985).

Dynamic Programming: Matrix chain multiplication,
longest common subsequence, optimal binary search tree
(Aho et al., 1974).

Graphs: Depth-first and breadth-first search (Moore,
1959), topological sorting (Knuth, 1973), articulation points,
bridges, Kosaraju’s strongly-connected components algo-
rithm (Aho et al., 1974), Kruskal’s and Prim’s algorithms
for minimum spanning trees (Kruskal, 1956; Prim, 1957),
Bellman-Ford and Dijkstra’s algorithms for single-source
shortest paths (Bellman, 1958; Dijkstra et al., 1959) (+ di-
rected acyclic graphs version), Floyd-Warshall algorithm
for all-pairs shortest paths (Floyd, 1962).

Strings: Naive string matching, Knuth-Morris-Pratt (KMP)
string matcher (Knuth et al., 1977).

Geometry: Segment intersection, Convex hull algorithms:
Graham scan (Graham, 1972), Jarvis’ march (Jarvis, 1973).

The CLRS-30 Benchmark (ICML'22)

CLRS-30 is not just a dataset;
it is a dataset & baseline generator!

The CLRS Algorithmic Reasoning Benchmark

Petar Velickovié¢ ! Adria Puigdoménech Badia! David Budden !
Razvan Pascanu'! Andrea Banino!' Misha Dashevskiy' Raia Hadsell! Charles Blundell !

https://github.com/google-deepmind/clrs

The CLRS-Text Benchmark (ICML'24 DMLR)

Recently: bringing CLRS-30 into the LLM age!

The CLRS-Text Algorithmic Reasoning Language Benchmark

Larisa Markeeva“! Sean McLeish “? Borja Ibarz*! Wilfried Bounsi! Olga Kozlova! Alex Vitvitskyi !
Charles Blundell! Tom Goldstein T2 Avi Schwarzschild T3> Petar Velickovié T !

https://github.com/google-deepmind/clrs/tree/master/clrs/_src/clrs_text

Models: Preliminaries on graph neural networks

Xa - . h, —
bb
my,
e X €—Mp, Xe
: " AL
/." \V
>Mpg <" ’ mMye

Xd T Xe

Message-passing

vEN,

Models: Preliminaries on graph neural networks

Xa -
- hy = ¢ | xu, @ ¥ (xu, %)
my, Cnbb ’UENU
F A .
\ - Message function
Xb __(...—mbcv XC ’(,b - RF « RF S R™
>Mpg <" af mMye
Xd Xe

Message-passing

Models: Preliminaries on graph neural networks

Xa
.‘Q o
bb
My,
)mbd("""" ‘ mbe
Xd X6
Message-passing

h, = ¢ | %u, P ¥ (%u, %)

veEN,,
Message function
¥ : RF x RF — R™
Aggregation function
@ : bag(R™) — R™

(a choice of monoid structure on R™)

The aggregation function, @, needs to be permutation invariant (e.g. sum, max, average)

Models: Preliminaries on graph neural networks

Xq -
* hu:¢ Xy, @¢(xuaxv)
my, Cnbb ’UENU
M & :
\ B ey Message function
e Xy te—— . mbcY Xe e RE x R*F _s R™
/ \“’ Aggregation function
>Mpg < m
g 28 @ : bag(R™) — R™
A
Xcé s, X Update function
. > é:RF x R™ - R
Message-passing

Message and update functions are the only parametric components of a GNN

Models: Preliminaries on graph neural networks

Xa
.‘Q o
bb
My,

¢ ¥

)mbd("""" ‘ mbe
Xd X6

Message-passing

h, = ¢ | %u, P ¥ (%u, %)

vEN,
Message function
¥ : RF x RF — R™
Aggregation function
@ : bag(R™) — R™
Update function
é:RF x R™ - R

e.g. can be a single-layer NNs: zp(xu, xv) — ReLU(Wlxu + Wox, + b)
with parameters W1, W, € Rka, b € R™ optimised using gradient descent.

For more information on GNNSs...

Everything is connected: Graph neural networks
Petar Velickovié'*

Abstract

In many ways, graphs are the main modality of data we
receive from nature. This is due to the fact that most of the
patterns we see, both in natural and artificial systems, are
elegantly representable using the language of graph struc-
tures. Prominent examples include molecules (represented as

DeepMind

graphs of atoms and bonds), social networks and trans- Theoretical Foundations
portation networks. This potential has already been seen by

key scientific and industrial groups, with already-impacted Of Graph Neural NetWOl'kS
application areas including traffic forecasting, drug discovery,

social network analysis and recommender systems. Further, ESEHEC ICONC

some of the most successful domains of application for ma- CST Wednesday Seminar

. . . » . 17 February 2021
chine learning in previous years—images, text and speech

processing—can be seen as special cases of graph repre-
sentation learning, and consequently there has been signifi-
cant exchange of information between these areas. The main
aim of this short survey is to enable the reader to assimilate the
key concepts in the area, and position graph representation
learning in a proper context with related fields.

What | do:
Playing the alignment game

Key concept: algorithmic alignment

To align GNNs with computation...

So far, our approaches have modified:

h, = ¢ | x., @ Y (Xy, Xp)

veN,

lterGNN, Tang et al.,

To align GNNs with computation... (NeurlPS20) forces the

So far, our approaches have modified:
e The parametric functions of the GNN

parametric functions to
be homogeneous

Y(Xy, Xy) = ReLU(W1x, + Wax,)

(@) f(Ax) = Af(x), VA > 0,x € R?

Velickovié et al. (ICLR’20): to

U2

To align GNNs with computation...

oF

Just set @ = max!

Wmm Tll»

So far, our approaches have modified: du = | min|dy|+ wyu g
e The parametric functions of the GNN
e Theaggregation function of the GNN ma1 Ms1
W @
4)

h, =|¢ | X4, ['Qb (x’u’ x’v)]

. . . n-body physics (Battaglia
To align GNNs with computation... et al, NeurlPS16)
Forces follow an inverse

So far, our approaches have modified: square law - transform
the distance features!

e The parametric functions of the GNN

e Theaggregation function of the GNN
e The features going into the GNN ’wéz),v) = My - (iL'q(;t) — wz(z,t))/”mz(//t) - azq(,t)H%
4)

h, =|¢ (=, [P Eax)

_ veN,)

®
PGN (Velickovic et al.,

To align GNNs with computation... NeurlPs20)

So far, our approaches have modified:

Align edges to a data
structure for improved

The parametric functions of the GNN time complexity!

The aggregation function of the GNN
The features going into the GNN
The computation graph over which the GNN operates

To align GNNs with computation...

So far, our approaches have modified:

e The parametric functions of the GNN

e Theaggregation function of the GNN

e The features going into the GNN

e The computation graph over which the GNN operates

... What else even is there to do???

Recap

So far, our approaches have modified:

e The parametric functions of the GNN

e Theaggregation function of the GNN

e The features going into the GNN

e The computation graph over which the GNN operates

An important point is missing, and it was not even in the equation...
the clock (1) which synchronises the message passing mechanism

What | am betting on:
Reconciling (G)NNs with
-. Asynchrony _,

Asynchrony (), the next frontier!

e Aswe discussed at the beginning, GNNs/Transformers tend to struggle when asked to
reason, especially over very long trajectories, especially out-of-distribution

e Reasoning: executing a robust procedure for solving instances of a problem

e Here we hit a roadblock to long-range generalisation: most problem-solving techniques are
asynchronous—only a handful of variables can be meaningfully updated at each step.

e Thisis a topological constraint of the problem—not a limitation of aligning to algorithms!

Asynchrony (), the next frontier!

e Here we hit a roadblock to long-range generalisation: most problem-solving techniques are
asynchronous—only a handful of variables can be meaningfully updated at each step.

e Thisis a topological constraint of the problem—not a limitation of aligning to algorithms!
o If you update a node when you shouldn't, it is opportunistic & prone to failures

e Yet, our models are synchronous: update all node/token states, everywhere, all the time

e Think about the message / update functions such a model needs to learn to generalise!
o Identity-like for most nodes... but highly complex in others.

How to reconcile (G)NNs with asynchrony?

Parallel Algorithmic Alignment

Learn to execute parallel algorithms whenever possible!
Engelmayer, Georgiev, Velickovi¢ (LoG'23)

Elegant, scalable and theoretically sound! But not always possible :(

How to reconcile (G)NNs with asynchrony?

(TamanH)\

(An H? Not interesting to m@

OH! I have an H neighbor)
@ Then this is an alcohol)
Asynchronous GNNs Cooperative GNNs
Exchange and react to individual messages Nodes decide whether to listen or broadcast
Faber and Wattenhofer (LoG’23) Finkelshtein et al. (ICML’24)

Directly solves the problem! But hard to scale on modern hardware, with many discrete decisions

How to reconcile (G)NNs with asynchrony?

\ , y) ¢
mba 7 xb{a} < Xb
\\¢‘
(
y ! N LSRR
my, * Xplab) F Mg, rd
Y‘
Y

mbC > x;’ >mgb """""""""""""""" > d

Asynchronous Algorithmic Alignment

Design synchronous GNNs that are provably invariant under various forms of asynchrony
Dudzik, von Glehn, Pascanu, Velickovic (LoG’23)

Hits a sweet spot between soundness, scalability, and feasibility!

What we developed:
Asynchronous
Algorithmic Alignment

The general strategy towards asynchronous alignment

e Assume that our target algorithm supports certain kinds of asynchrony
o e.g.variable updates can be processed in arbitrary order, without affecting the result

e Our strategy is to describe several levels of asynchronous alignment
e At each level, we will remove certain synchronisation points from the GNN
e Their removal, while maintaining invariance, will invoke a constraint on the GNN’s modules

e Satisfying these constraints will induce asynchronous algorithmic alignment to algorithms
supporting the same level of asynchrony

The synchronisation points of GNNs

Need to block on all messages arriving before Xa
invoking the aggregator and update K <~
my, l .
Need to block on the update function before
invoking the message function ,Xb mbc“m “““““ i
m:ﬂ) (...
D ¢
X (- ¢ \ (O, s d
My 7 I, r Xy * 1M g

What we need to describe

e There are three types of data at play here:
o The set of messages, M
o The set of node states, S [which change as a result of receiving messages]
o The set of node arguments, A [inputs to the message function]

[in practice, often M = S = A = R¥]

What we need to describe

e There are three types of data at play here:
o The set of messages, M
o The set of node states, S [which change as a result of receiving messages]

o The set of node arguments, A [inputs to the message function]

e Further, we will assume that both M and A admit a monoid @ structure
o Monoids are “groups without inverses”: a great abstraction to study computation
o There exist exact correspondences between monoid actions and state machines
o Inessence, we assume both messages and arguments can be iteratively assembled

Petar Velickovié
@PetarV 93

Staff Research Scientist @GoogleDeepMind | Affiliated Lecturer @Cambridge Uni |
Associate @clarehall cam | GDL Scholar @ELLISforEurope. Monoids.llﬁlﬂﬁl

What we need to describe

e There are three types of data at play here:
o The set of messages, M
o The set of node states, S [which change as a result of receiving messages]
o The set of node arguments, A [inputs to the message function]

e Further, we will assume that both M and A admit a monoid @ structure

e We will write these two monoids as (M, -, 1) and (A, +, 0)
[The operators and neutral elements are chosen just for distinguishability; they may be identical.]

A single (potentially aggregated) message then transforms the state and emits an argument
(m, s) = (m e s,0m(s))

o:MxS— S
O MxS— A

Level 1 of asynchronous alignment

e First, note that our message monoid in GNNs is (Rk, @D, O@)

e To make the aggregation order irrelevant, we only need this monoid to be commutative:

mobon—-nmoém

e Then, messages can be aggregated as soon as they arrive, without synchronisation

e Most (if not all) GNNs use a commutative monoid for their aggregator!
o See LCM (Ong and Velickovic, LoG'22) for more details.

Level 1 of asynchronous alignment

/o

mbb —} mb{a,b} _> mb } xb } mdb

Message monoid actions (m, s) = (mes,dn(s))

e We are interested in the effect of multiple messages arriving
o Asynchrony would imply we can let those messages either act separately, or
simultaneously, and still achieve the same result in both

e Forcing our transformations to be monoid actions induces a form of asynchrony invariance

Message monoid actions (m, s) = (mes,dn(s))

e We are interested in the effect of multiple messages arriving
o Asynchrony would imply we can let those messages either act separately, or
simultaneously, and still achieve the same result in both

e Forcing our transformations to be monoid actions induces a form of asynchrony invariance

e For state transformations, we would require:

les==s

(n-m)es=ne(mes)

—_—
.

neutral message does not change state, and
2. we can either transform state by two messages separately, or first compose them and
transform once - the resulting state is the same

In GNNs (ma 8) — (mos,dm(s))

les=s
(n-m)es=mne(mes)
e These conditions transfer to the following GNN update function conditions:
¢(X7 O@) — X
¢(x, m & n) = ¢(¢(x, m), n)

e Then, messages can trigger updates as soon as they arrive, without synchronisation

e One simple way to satisfy this is to set ¢ = EB and rely on the associativity of EB

Message monoid actions (m, s) = (mes,dn(s))

e For argument emission, we would require:
51(8) 0
5 (5) = 8m(5) + 6, (m o 5)

neutral message emits neutral argument, and

2. we can either compose two messages and emit an argument, or emit one argument from the
first message, then emit a second argument from the transformed state by the second
message, and combine the two emitted arguments - the resulting argument is the same

—_—
.

This condition is known under many names in mathematics:
1-cocycles, derivations, and crossed homomorphisms

Message monoid actions (m, s) = (mes,dn(s))
51(8) 0
Onm(8) = Om(8) + dn(m @ s)
e Assuming an argument monoid of (Rm, X, 1®) this translates into following constraints:

¢(X7 OGB) — 1®
¢(x, m & n) = ¢(x, m) ¢(¢(x, m), n)

e Then, messages can emit partial arguments as soon as they arrive, without synchronisation

o If M =85=A4and®d = ®,itis sufficient to make the update idempotent to satisfy this.
o Combining with the previous rule, we can set, e.g., qﬁ = P = max

Level 2 of asynchronous alignment

X, = max (xu, max w(xu,xv))

veENL

y /! 3
7 xb{a} < Xb

Message computations

—_—
.

Once argument(s) are computed, they can be used to produce new messages
o Thisis a stateless monoid transformation, as edges don’t keep persistent state
o (If they did, our framework would treat them as nodes anyway!)

Assume the specific case of single-argument messages (¢ : A — M.

The conditions for making ’¢ a 1-cocycle amount to making it a monoid homomorphism:

$(0) =1
P(a+b) = P(a) - P(b)

neutral argument produces neutral message, and
we can either produce a single message from combining two arguments, or produce one
message from each argument, and then compose them - the resulting message is the same

Message computations

e Once argument(s) are computed, they can be used to produce new messages
o Thisis a stateless monoid transformation, as edges don’t keep persistent state
o (If they did, our framework would treat them as nodes anyway!)

e Assume the specific case of single-argument messages (¢ : A — M.
e The conditions for making 'zp a 1-cocycle amount to making it a monoid homomorphism:
p(a+b) = 1p(a) - P(b)

This generalises to messages produced from multiple arguments, ¢ A XX Ay > M

we'd need ¢ to be a monoid multimorphism for it to be a 1-cocycle
(if we keep k - 1Targuments fixed, it needs to be a monoid homomorphism in the remaining one)

Message computations

$(0) =1
$(a+b) = Y(a) - $(0)
Y(—o0) = o0
¥(max(a, b)) = max(i(a), y(b))

e Then, messages can be sent whenever arguments are updated, without synchronisation

e To satisfy this, we can make the message function a tropical linear layer in the max-semiring
o Matrix multiplication with a weight matrix, but changing times to plus, and plus to max
o Can obtain a multimorphism via a tropical multilinear layer

Level 3 of asynchronous alignment

X!, = max (Xu, max (W ® (max,+) Xu T U ® (max,+) XU))

veEN,

y v/)
mba 7 Xb{a} < Xb

Level 3 of asynchronous alignment

e |t's worthy to take a step back and see what the “tropical linear” layer does!

e Itis well-known we can express shortest path-finding algorithms as repeated matrix-vector
multiplication of the distance matrix with node distances, in the max-plus semiring.

e Here, we are multiplying a weight matrix with high-dimensional vectors in every node

e Hence, we can imagine such a layer as solving several path-finding problems in parallel
o Each starting from different initial distance conditions

e Issue: we have quadratically many parameters, but only linearly many will receive gradients!
o Asa quick fix: use the logsumexp semiring instead, as a smooth approximation.

Ascending this ladder improves OOD execution capability

sum-¢
max-max

Jaydjew aAleu
303919sydInb
Jaydjew dwy
20s

[leysiem pAoj
yoleas Aleuiq
3sq [ewndo

~ ljosyainb

Aeuqieqns xew
yosew siasef
posdeay
uleyd xuuyew
ds bep
yibua| so|
wid3sw
payds dsel
ueds weyeib
Hos odoy
Hos 3|qqnq
|exsniy Isw
HOS uoIjasuUl
sabpuiq
109J9s Joe
uoije|ndipe
ensyfip

pJoj uewl||aq
109sJa3ul

ol

wnwiuiw
Siq

Want to know more?

Want to know more? (NAR side)

There’s a lot of stuff | didn’t have time for today.

Want to learn more? Detailed list of references?

Check our LoG’22 Tutorial!

algo-reasoning.github.io

Neural Algorithmic
Reasoning

LoG 2022 Tutorial (& beyond!)

Petar Velickovié, Andreea Deac and Andrew Dudzik

(Watch the Tutorial) (Slides and Code

L Annotated References) | About the Presenters

Abstract inputs

0

+00——+00

+m(/’j‘\\+x
-
N
T

Natural inputs

P

Processor
Liii

L

Abstract outputs

Natural outputs

Want to know more? (CO side)

Combinatorial Optimization and Reasoning
with Graph Neural Networks

Quentin Cappart QUENTIN.CAPPART@POLYMTL.CA
Department of Computer Engineering and Software Engineering

Polytechnique Montréal

Montréal, Canada

Didier Chételat DIDIER.CHETELAT@QPOLYMTL.CA
CERC in Data Science for Real-Time Decision-Making

Polytechnique Montréal

Montréal, Canada

Elias B. Khalil KHALIL@MIE.UTORONTO.CA
Department of Mechanical & Industrial Engineering,

University of Toronto

Toronto, Canada

Andrea Lodi ANDREA.LODIQCORNELL.EDU
Jacobs Technion-Cornell Institute

Cornell Tech and Technion - IIT

New York, USA

Christopher Morris MORRIS@QCS.RWTH-AACHEN.DE
Department of Computer Science

RWTH Aachen University

Aachen, Germany

Petar Velickovié PETARV@DEEPMIND.COM
DeepMind
London, UK

For the CO practitioners in the audience:

Our 61-page survey on GNNs for CO!

https://arxiv.org/abs/2102.09544

(JMLR"23)

Section 3.3. details algorithmic reasoning,
with comprehensive references.

https://arxiv.org/abs/2102.09544

Want to know more? (CDL side)

The idea of removing constraints from groups to
analyse neural networks is a hint at a much richer
picture, based on category theory

We recently wrote a paper outlining this picture:

categoricaldeeplearning.com

and feedback is very much welcome!

As a bonus: we can rediscover 1-cocycle conditions
using the gadgets proposed in CDL (see Appendix).

Categorical Deep Learning

An Algebraic Theory of Architectures

Bruno Gavranovic¢, Paul Lessard, Andrew Dudzik,

Tamara von Glehn, Jodo G. M. Araujo, Petar VeliCkovi¢

[Read the paper 1

[Learn the basics (Cats4Al) ’

[Literature ’

Powered by Linkhub. Code is licensed under MIT.
© 2024 Categorical Deep Learning

Want to know more? (CDL side)

The idea of removing constraints from groups to
analyse neural networks is a hint at a much richer
picture, based on category theory

We recently wrote a paper outlining this picture:

categoricaldeeplearning.com

and feedback is very much welcome!

As a bonus: we can rediscover 1-cocycle conditions
using the gadgets proposed in CDL (see Appendix).

Meme credits go to Michael Galkin, as always :)

* depths of deep learning theories *

Geometric
Deep Learning
(Bronstein, Bruna, Cohen, Veli¢kovi¢, 2021)

GNN ship
r

-

Categorical
Deep Learning

(Gavranovi¢, Lessard, Dudzik, et al, 20; 24)

O
Thank you.

Petar Velickovié¢

petarv@google.com
https://petar-v.com

With many thanks to Andrew Dudzik, Tamara von Glehn and Razvan Pascanu

Google DeepMind

