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Two-dimensional (2D) materials are gaining significant attention for their unique properties and
potential applications. Raman spectroscopy is a rapid, non-destructive tool for characterizing these
materials, but traditional analysis methods are often time-consuming and subjective. In this study, we
leverage deep learning, including classificatory and generative models, to enhance Raman spectra
analysis for 2D materials. To address the challenges of limited and unevenly distributed data, we use
Denoising Diffusion Probabilistic Models (DDPM) for data augmentation and develop a four-layer
Convolutional Neural Network (CNN) for classification. Our CNN model achieves an accuracy of
98.8%, with the DDPM-CNN approach reaching 100% classification accuracy, demonstrating the
method's effectiveness and reliability in automated material analysis. This work highlights the
potential of deep learning-assisted Raman spectroscopy for precise and rapid 2D material
characterization.

The task of identifying different 2D materials is framed as a multi-class classification problem. We used 
a dataset of 594 Raman spectra representing seven distinct 2D materials and three stacked combinations:  
Black phosphorus (BP), Graphene, MoS₂, ReS₂, Tellurium (Te), WSe₂, WTe₂, BP–WSe₂ (S1), Te-ReS₂-
WSe₂-Graphene (S2), and Te-WSe₂-WTe₂ (S3). The spectra vary due to differences in substrates, with 
detailed dataset composition shown in Table 1.

Materials Quantity of spectra
BP 35

Graphene 209
MoS2 8
ReS2 15

Te 270
WSe2 6
WTe2 28

S1 8
S2 7
S3 8

Total: 594
Table 1. Statistics of Raman spectral dataset of 2D materials studied in this work. S1 to S3 refer to
various heterostructure stacks (see text for details).

Figure 1. Illustration of the DDPM-based data augmentation for
Raman Spectroscopy of 2D materials classification framework.
(a) Data augmentation module based on DDPM. (b) Spectral
classification module based on 1D CNN.

Figure 2. An illustration of the ResNets architecture. In this schematic,
"FC" denotes the fully connected layer. "Relu" represents the rectified
linear unit (Relu) activation function. The "gated activation unit" consists
of the hyperbolic tangent (tanh) activation function and the sigmoid
activation function, it can be denoted as 𝑡𝑎𝑛ℎ 𝑊!,# ∗ 𝑥 ⊙ 𝜎 𝑊$,# ∗ 𝑥 ,
where W represents a convolutional filter, f and g represent the filter and
gate, respectively, and k represents the layer index.

Figure 3. The architecture of the four-layer CNN for Raman spectroscopy classification.

Figure 4. The Raman spectra of various 2D materials before
and after data augmentation using DDPM: (a) BP, (b)
Graphene, (c) MoS2, (d) ReS2, (e) Te, (f) WSe2, (g) WTe2, (h)
BP–WSe2 stack (S1), (i) Te-ReS2-WSe2-Graphene stack (S2),
and (j) Te-WSe2-WTe2 stack (S3). The left side represents the
original Raman spectra dataset, while the right represents the
augmented Raman spectra dataset.

Figure 5. t-SNE plots for (a) the original and (b)
the augmented dataset (including original spectral
data) of different 2D materials. [S1: BP–WSe2
stack, S2: Te-ReS2-WSe2-Graphene stack, S3: Te-
WSe2-WTe2 stack.]

Table 2: The average performance of ten-fold cross-
validation comparisons between the proposed methods
(with DDPM) vs. baselines.

Method Accuracy Precision Recall

CNN 0.988 0.945 0.937

DDPM-CNN 1.000 1.000 1.000

ANN 0.946 0.658 0.646

DDPM-ANN 1.000 1.000 1.000

RF 0.906 0.566 0.574

DDPM-RF 1.000 1.000 1.000

SVM 0.966 0.829 0.786

DDPM-SVM 1.000 1.000 1.000

KNN 0.953 0.826 0.770

DDPM-KNN 0.988 0.989 0.988

LR 0.960 0.731 0.711

DDPM-LR 1.000 1.000 1.000

Figure 7: Bar chart of the average performance of ten-fold cross-validation between the proposed methods (with DDPM) vs. baselines.

Figure 6. Confusion matrices depicting the average accuracy of ten-fold cross-validation in the classification of each category by
different algorithms: (a) CNN, (b) ANN, (c) RF, (d) SVM, (e) KNN, and (f) LR. The diagonal elements represent the percentage of
true positives, which is a key indicator of the algorithm's ability to correctly identify each category. The off-diagonal elements
represent misclassification rates.

This study successfully applies deep learning with DDPM-based data augmentation to
improve the classification of 2D materials from Raman spectra, achieving up to 100%
accuracy. While effective, the method relies on the initial dataset's quality and requires
significant computational resources. Future research should explore expanding this
approach to other spectroscopic techniques and integrating advanced methods like
transfer learning to enhance material characterization further.

This study addresses the challenges of traditional Raman spectroscopy analysis for 2D materials by
integrating a Denoising Diffusion Probabilistic Model (DDPM) with a 1D CNN classifier. By using
advanced data augmentation techniques, we expand the training dataset, significantly improving
classification accuracy. Our approach not only enhances the identification of 2D materials but also
streamlines the analysis process, reducing manual intervention and enabling efficient, automated
characterization, particularly in complex and industrial applications.
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