#### **Python seminar**

# The role of LLMs (and other tools)

Jesper Bruun

UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE









# In contrast: A physics classroom in Denmark...



#### LLMs in Programming education

- LLM performance in exams for beginners (<u>Denny et al 2023</u>)
  - Asked Copilot to solve all questions from two Python CS1 exams
  - It solved almost 50% of the problems on its first attempt
  - Copilot "got" 78.5% on Exam 1 and 78% on Exam 2 (rank 17/71)
- Instructions opinions: a nonrepresentative survey (Lau & Guo 2023)
- A. Resistance to using LLMs in teaching
  - Instructors are concerned about the efficiency of learing
  - Countermeasures: AI proof assessments, proctored exams
- B. Embracing AI tools by integrating them in teaching
  - Focus on code reading and critical thinking
  - Encourage students to use AI tools for learning

Based on slides by Andrzejak 2024

#### LLMs Potential Benefits in Prg. Education

- Novices (n=69), age 10-17, were asked to complete 45 Python tasks
- Each task consisted of a code authoring followed by a code modification part



| S1 Intro:                                   | intro Scratch> pre-te                                      | st               |
|---------------------------------------------|------------------------------------------------------------|------------------|
| S2 - S8 <b>Train:</b>                       | $(author code (*)) \rightarrow mc$                         | odify code x45   |
| S9 - S10 <b>Test:</b>                       | $\bigcirc post-test \longrightarrow 1week \longrightarrow$ | retention test   |
| (*) Al Code Generator (50% of participants) |                                                            | S: Session (90m) |



### LLMs Potential Benefits in Prg. Education

• Retention posttest (1 week later): authoring, modification, multiple choice questions (see <u>Kazemitabaar et al 2023</u>)



• Students in the Codex (LLM) group reported being more eager to learn programming and felt less stressed, discouraged, and irritated while completing the tasks than those without Codex

Andrzejak 2024

#### Some theoretical thoughts

- Necessary to think about the change in our understanding of competencies to use AI productively
- Necessary to think about how we can teach them these competences
- Thus, also teacher training
- Generally, rethink educational tasks (for instance have the classroom work as a team to solve a difficult problem)
- Now, some thoughts about that from two big lines of thinking in science education research: sociocultural perspectives and cognitive perspectives

#### Student use of AI – a Vygotskian angle

- End-goal of teaching: mastery of cultural symbols and structures (Dolin 2017, p. 191)
- Knowledge: Between people -> into the person
- Internalization through mediation
- ZPD: Problem solving with the help of an adult or capable peer
- Should we see ChatGPT as a "capable peer", an artefact or both?
- Will affect internalization proces how students learn



#### Student use of generative AI – a Piagetian angle

- Assimilation og accommodation of knowledge by changing schemata
- Accommodation initiated by a cognitive disturbance causing the mental system to become unbalanced (one wonders)
- It could be due to getting a result one did not expect
- The student may not respond to this unbalance and push aside any wonderment (Dolin 2006)
- But the student should be careful with that strategy when using ChatGPT.
- So, perhaps we can use this opportunity to teach and give opportunity for our students to wonder
- Need to analyse the actual interactions!

### From a physics teaching unit



Three (virtual) mystery boxes •

Use

ents

virtual

- Lead on the outside
- Something else on the inside •
- Students need to figure out what is on the inside



#### The Race to Space Helper (show)

Race to Space helper  $\sim$ 

- How do we analyse our data in excel?
- O To analyze your data in Excel, let's start by importing and visualizing it. Here's a step-by-step guide:
  - 1. Import Data:
    - Open Excel and go to `File > Open`.
    - Select your CSV file (e.g., SANS\_Qq\_2.0\_0.2\_0.004\_1.0\_1.0\_1.0\_1.0\_blueVial.csv).
  - 2. Data Cleaning:
    - Ensure your data is correctly formatted in columns.
    - Check for and remove any irrelevant or missing data points.
  - 3. Plotting Data:
    - Select the columns you want to plot (e.g., Q and Intensity).
    - Go to `Insert > Scatter Plot` to ``isualize the data points.

#### LLMs for learning – Inquiry Bots

| <br>ČČČ |
|---------|

Can LLMs learn to do as good teachers do? At least to some extent?



If so, then this could benefit students



Patient GPT and no judgement from teacher and classmates



# THE INQUIRY PHYSICS TEACHER BOT FOR E-M

- Trained with prompt, examples, and even extra literature.
- We now have a version that we think does some of the right things
- Find examples on the padlet (QR->)
- Choose one example, and see how you like it
- Work by Filomela Avdi



#### **Discussion questions**

- Can we make a "dialogical programming GPT" i.e. a GPT that behave as a good teacher?
- Should we?