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QCD Phase Diagram
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adapted from 

arXiv:2211.04384
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Questions (for today)
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What is the nature of the QGP?
How is the transition between 

deconfined and confined phase?

How is the onset of QGP production? 

Emergence of QGP phenomena?



Heavy-Ion Collision, conceptually…
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Heavy-Ion Collision, conceptually…
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t = 0 fm/ccollision

pre-equilibrium

hydrodynamic evolution

chemical freeze-out

hadronization

kinetic freeze-out

t = ~1 fm/c

t = 10 fm/c

Time

particle detection t = 3 cm/c

1 fm/c = 3 · 10-24 s



Heavy-Ion Collision, experimentally…
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Significant impact of Russian 

aggression against Ukraine

CERN

LHC: 27 km

BNL

RHIC: 3.8 km
→ sPHENIX

NICA: 0.5 km

GSI/FAIR

SIS-100: 1 km

ATLAS

ALICE

NA61

LHCb

CMS

HADES

CBM
BM@N

MPD



• LHC (Run 3): 208
82Pb on 208

82Pb at sNN = 5.36 TeV

– Center-of-mass energy for hard processes

• Total available collision energy: sPb-Pb = 1.1 PeV

• Immense collisions with thousands of tracks

– Imagine a pp collisions with pile up of about 400
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Heavy-Ion Collision, experimentally…
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• Impact parameter available experimentally

– Not the case for pp: “hidden” parameter

– Multiplicity is global event property (forward Nch ~ mid Nch)
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Centrality
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QGP Key Properties
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• The QGP affects bound-state formation

• Binding potential of quarkonia is modified

• ccbar produced in hard scattering does not 

hadronize to J/ in presence of medium

• Large ccbar density → regeneration
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J/
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J/ modification vs. energy density

H. Satz
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arXiv:2211.04384



• The QGP alters jet energies

– Radiative and collisional energy loss due to interactions of 

traversing parton with quarks and gluons in the medium

• Back-to-back jets significantly altered
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Jet Quenching
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• For all strongly interacting probes

– Significant suppression (RAA ~ 0.14)

• Ratio of steeply falling spectra

– Different dynamics depending on particle

• Dependence on mass and quark content

• EW probes (, Z, W) not suppressed

– Do not interact with QGP

– Confirm correct scaling of RAA

• Used to constrain QGP properties

– Needs modelling (see later…)
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Jet Quenching
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A Flowing System
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• Collision zone not isotropic (coordinate space)

• Pressure gradient → momentum-space anisotropy

– Requires reinteractions, strongly-coupled system

• Access to event-by-event fluctuations of nucleon density

• Measurable through azimuthal distribution of particles



• Magnitude depends on n

– E.g. 2v2 = 20% of particles “move” 

from out-of-plane to in-plane

• Clear centrality dependence
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Flow coefficients vn

High Density QCD with Heavy-Ion and Proton Beams - Jan Fiete Grosse-Oetringhaus

PRL107, 032301 (2011)

v2

v3

vn vs. Centrality

( ) −+=
n nn nvA

d

dN
)(cos21 





• Azimuthal distribution entirely described up to 5th order

• Finer structures can be extracted with high statistics (n = 9, at present)
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Higher Orders
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• Shear viscosity /s washes out initial-state anisotropies

– Large influence on higher-order flow

• Bayesian estimates for QGP medium properties 
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Transport Coefficient: Shear Viscosity
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• Charm and beauty produced in initial scattering 

(HF < QGP formation)

– Initial production calculable perturbatively

– Undergoes entire medium evolution 

(“Brownian motion markers”)

• Experimentally challenging probe

– Secondary vertex reconstruction, small branching ratios, 

large combinatorics

• D mesons strongly suppressed

– Collisional and radiative energy loss visible

• Sizable v2 and v3 for D and J/, and v2 for b → e

– Charmed hadrons and beauty (electrons) flow with medium

– Thermalization (= sufficient re-interactions)
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Heavy Quarks
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• Energy loss depends on quark mass

– Dead cone effect: gluon radiation in vacuum 

suppressed for angles  < m/E = 1/ by

• Observed with B → non-prompt J/ at high pT

• Models need to simultaneously describe both
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Quark-Mass Dependence
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• Combined model fits of charm (RAA + vn)

• Constraints on spatial diffusion coefficient

– Governing Brownian motion of charm in medium

– Strongly coupled (DS small) → moves “with” the QGP

– Weakly coupled (DS large) → few independent scatters

– Strong temperature dependence

• Strongly coupled at low T

• Coupling model-dependent at large T

– At phase transition: 1.5 < 2DST < 4.5

• Relaxation time (approach to equilibrium)

– 3-9 fm/c at phase transition

→ Charm thermalizes in QGP (t ~ 10 fm/c)
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Transport coefficient: Spatial Diffusion
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2TDS

arXiv:2211.04384

2TDS vs. T



• Quenching power characterized by “qhat”

• Strong temperature dependence

– Cubic dependence on temperature

– Various approaches: weak-coupling approaches, 

monopoles, Bayesian estimates

– Large spread at lower T where quenching is 

overall smaller

– Similar values at large T

• Most stringent from Bayesian 

estimates (JETSCAPE)
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Transport Coefficient: Quenching Power
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• Photons emitted by the medium

– Signals from all phases of medium evolution

– Mix of temperatures → effective temperature

• Temperature from slope of photon yield

• Large initial temperature 

– T ~ 300 MeV at LHC (sNN = 2.76 TeV)

– T ~ 240 MeV at RHIC (sNN = 0.2 TeV)
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QGP Temperature
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Phys. Lett. B 754 (2016) 235-248

ALICE-PUBLIC-2015-007

Inv. yield vs. pT

Large initial temperatures 

in heavy-ion collisions



Transition from 
QGP to Hadrons
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• Hadronization is a non-perturbative process

–  No first-principle description

–  QCD… but when does it begin exactly?

–  Understanding is very important, as a fundamental element of QCD

• Affects all observables which measure hadrons

• Needed for background estimates, including in searches

–  Experiment guides the way hand-in-hand 

 with theory-inspired phenomenological models

• Initially: Factorized description of hadron production

– Multiple interactions within collision combined incoherently

• But: Picture fails when multiplicity increases

– Addition of e.g. colour reconnection needed
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Hadronization
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• Baryon production (e.g. ) not described by e+e- inspired models

– E.g. in Pythia, need for more than basic color reconnections (e.g. junctions, JHEP 08(2015)003)

• Baryon enhancement not visible for jet constituents

– Fragmentation remains independent of other activity in the event

25

Baryon Production
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• Charm and beauty produced in hard scattering, 

rarely in string fragmentation

• Baryon enhancement also in charm sector

– Surprise: c/D significantly larger than e+e- expectation

– Pythia with reconnections beyond leading colour works

• Significant effect on fragmentation fractions

– Less D0 in pp than in e+e- and ep

– More c in pp than e+e- and ep
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Charm Sector
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• Coalescence in filled phase space of quarks and gluons

– Partons close in momentum and position space coalesce to hadrons

– Probability is pT dependent

– Can be successfully applied to large objects

• Nuclei have small binding energy and are formed late

• Statistical hadronization: Relativistic ideal quantum 

gas of hadrons in thermal and chemical equilibrium

– 3 free parameters: V, T, B

– Central Pb-Pb at LHC 

•  T = 156 ± 2 MeV

•  B = 0.7 ± 3.8 MeV

•  V ~ 5000 ± 500 fm3

Coalescence and Statistical Hadronization
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Onset of QGP Production
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• Hadronization for strange particles density-dependent

• Strange particle production increases with multiplicity

– K/, /, /, /

– from pp, over p-Pb, to Pb-Pb

  Independent fragmentation

  EPOS 

       (core-corona)

  Colour rope mechanism

       (DIPSY)
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Strangeness Enhancement
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• THERMUS SCE

– With fixed T

– No good description

• Thermal-FIST

– Multiplicity dependent T 

– Strangeness suppression 

parameter S

– Good description: / and /

– p/ only qualitative

• Colour ropes in Pythia

– Successful for / and /

– Far off for p/
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Statistical Hadronization Model in pp and p-Pb
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• Two-particle correlations

– “Probably density” to find second particle
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Collective Phenomena
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PLB 765 (2017) 193

Near-side jet

Resonance decays

Away-side jet




http://dx.doi.org/10.1016/j.physletb.2016.12.009


• Striking observation of long-range ridge structures
– First publication:  JHEP 09 (2010) 091

• Initially seen in high-multiplicity in pp and p-Pb

– Jet subtraction procedure revealed 

almost symmetric away-side component

• Entire field emerged; paradigm shift

– What is smallest system for which heavy ion “standard model” 

remains valid?

– Can the standard tools for pp physics remain standard?
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Collective Phenomena
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Higher-Orders Collectivity
How many particles contribute to the phenomena?
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PLB 765 (2017) 193

Ridge component characterized with multi-particle correlations: pp ~ p-Pb < Pb-Pb

→ At least 6 particles involved above Nch  90

v2 (= second Fourier harmonic of ridge structure) vs. Nch



• Light particles (, K, p, , ) group by quark 

content (baryon vs. meson)

– Large systems: shows partonic degrees of freedom

– Also observed in high-multiplicity p-Pb and pp

• Charm quarks show collective behaviour

– Large systems: they thermalize in the medium

– Also observed for D and J/ in high-multiplicity p-Pb

• Bottom quark flow in large systems

– Large systems: they are affected by the medium

– Hint in high-multiplicity p-Pb

34

Identified-Particle Collectivity
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• Low multiplicity dominated by jets, resonances

(~negligible in high-multiplicity pp or p-Pb)

• Key problem: Ridge “too small to stick out”

– Extracting v2 coefficient requires subtraction procedure

• Low-multiplicity subtraction

• Template fit method
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Low Multiplicity
Does the phenomena switch off?
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• Low-multiplicity pp collisions studied on near side

– Ridge found for multiplicities as low as minimum bias

• Archived e+e- (ALEPH) and ep (HERA) data re-

analyzed

– Thrust axis analysis

– No ridge observed 

(minor hint at high multiplicity, see backup)

• 5 difference between pp and e+e- at 

the same multiplicity

– Comparison as a function of multiplicity challenging
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Even smaller systems 
e+e- and ep
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• Particles in very dense jets

– pT > 550 GeV/c    <Nch> = 101

• Rotation of jet “into” beam axis

• Ridge-like contribution
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Very High Multiplicity Jets
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• Field shifted paradigm due to small system discoveries

– Enormous experimental and theoretical work in the last 10+ years
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More about small systems…
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Read more in: arXiv:2407.07484

https://arxiv.org/abs/2407.07484


Nature of the QGP
Summary

• Particle production significantly altered

• Distinct phenomena connected to quark and gluons as degrees of freedom
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• QGP studies allow to constrain several transport coefficients

• Shear viscosity /s washes out initial-state anisotropies

• Bulk viscosity /s which reduces rate of radial expansion

• Spatial diffusion coefficient DS governing motion of charm

• Quenching power     governing the energy loss of traversing partons
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Summary: Transport Coefficients
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Summary: Temperatures
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Depends on model and 0:

• IP-Glasma+MUSIC: up to 0.8 GeV

• TRENTO+VISHNU: up to 0.35 GeV

• From : up to 0.64 GeV

effective temperatures

averaged over medium lifetime

from Statistical Hadronization Model

from Blast-Wave fits

Hadrons    QGP



Summary: Medium Evolution
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Density fluctuations 

 

spatial anisotropies

Chemical freeze-out 

T ~ 156 MeV

V ~ 5000 fm3

Values for central sNN = 2.76 TeV collisions (LHC)

Kinetical freeze-out 

T ~ 90 – 150 MeV

Viscous hydrodynamics

/s ~ 0.08 – 0.24

Dense medium



Energy loss, 

Quarkonia melting

Large pressure 



 collective flow

Initial temperature 

T > 300 – 800 MeV

ෝ𝒒 ≈ 𝟏. 𝟓
GeV2

fm



Future
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High-Energy Frontier

LHC + RHIC
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Large-B Frontier

RHIC + FAIR

NICA + SPS

MPD

(?)

BM@N CBM

(2028?)

HADES NA61/SHINE
NA60+

(?)

ALICE

ATLAS CMS

LHCb

sPHENIX
ALICE 3 

(2035?)

Major upgrades 

completed in 2021

Major upgrades in 

2026-28

Data-taking 

since 2023

1011 

MB 

events

106 events 
Nch > 12 <Nch>

(250 particles 

in || < 1.5)

1011 

MB 

events

10 nb-1 Pb-Pb 35 nb-1 Au-Au
200 pb-1 pp

LHC 2022-32 LHC 2022-25RHIC 2023-26



P(#signal) vs. #signal

Glauber

O-O

p-Pb

• O-O, p-O collisions in LHC planned for July 2025
– 3 days p-O: ALICE: p-O: 2 nb-1, ~108 events 

– 1 day O-O: ALICE: O-O: 0.5 nb-1, ~7x107 events

• AA geometry but Nch, Npart, Ncoll as p-Pb
– Centrality shoulder allows geometry selection (Ncoll, ε2)

• System large enough to exhibit jet quenching 
– Critical test for energy loss for short path lengths

– If no quenching in O-O 
→ also p-Pb has insufficient energy density for quenching

• Cosmic-ray community expressed strong interest in 
p-O to constrain models for cosmic-ray showers
– Muon deficit in cosmic-ray simulations mitigated by adding 

collective effects or strangeness
(see e.g. arXiv:1902.08124)

45

Oxygen Run
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• Detector for LHC Run 5 and 6 (2035-41)

•  sNN = 5-6 TeV (PbPb, XeXe, InIn?, KrKr?)
– Species driven by detector design and physics (no scan!)

• Thermal leptons

– Precise medium temperature, chiral symmetry restoration

• Multiple charm (cc, cc, …) production

– Hadronization models; coalescence on quark level

• Heavy-quark correlations: D0-D0 for QGP scattering

• Quarkonia beyond S-wave: c and b

– Dynamics of bound-state interactions within QGP

• Hadronic interactions and bound-state formation

– For example: D-D* and c-deuteron

• Ultra-soft photons
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ALICE 3 @ LHC
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• Retractable vertex detector 5 mm from beam

– Pointing resolution 3-4 m @ 1 GeV

– X/X0 ~ 0.1% per layer

• All-silicon tracker (pT resolution 1% @ 1 GeV)

• ECAL, RICH and muon detectors

• Continuous readout and online processing
Pb-Pb: 35 nb-1 | pp 18 fb-1

• Strangeness tracking: a MHz bubble chamber

• Status & Plan

– LoI submitted in 2022. Positive assessment by LHCC

– Scoping document to be submitted this year

– Installation in LHC LS4 (2033-2034)

– Data taking in LHC Run 5 and 6 (2035-2041)
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ALICE 3 @ LHC
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Run 5 and 6

https://cds.cern.ch/record/2845241


• ALICE ITS2 demonstrated: large scale (~10 m2) use 

of monolithic active pixel sensors (MAPS), 50 m thin

• Ongoing R&D for ITS3

– Wafer-scale sensors using stitching + bending

– “Zero-mass” detector: 0.02-0.04% X/X0 per layer

– Carbon foam + air cooling (power consumption < 20 mW/cm2)

• ALICE 3 R&D for picosecond timing and radiation hardness
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Silicon R&D
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More details, see seminar by Magnus Mager

28 cm

R = 18, 24, 30 mm
(only 2 layers in mock up)

https://indico.cern.ch/event/1071914/attachments/2316015/3942587/2021-09-24_DetectorSeminar-ITS3.pdf


49

Bending an ITS3 Sensor

High Density QCD with Heavy-Ion and Proton Beams - Jan Fiete Grosse-Oetringhaus

r = 18 mm !
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LHC Schedule
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ALICE 3

ALICE

ATLAS, CMS, LHCb 

NA60+

Approved

Proposed



Unique environment created in high-energy heavy-ion collisions

• Precise characterization of QGP matter 

– Strongly interacting with very small viscosity

– Particle production significantly altered

• Small-system observations (“collectivity”) challenge two paradigms at once

– What is smallest system for which heavy ion “standard model” remains valid?

– Can the standard tools for pp physics remain standard?

– Challenge to find universal hadronization model for these phenomena

• Future programme until end of LHC (in 2041)

– Measure QGP dynamics with charm states

– Study multi-charm production and temperature evolution of QGP
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Summary
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Thank you for your attention!
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Backup
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