Electron transport in photosynthetic biofilms

Mary Wood

08th October 2024

Biophotovoltaics

Mary Wood MSc day 08th October 2024 2 / 14

Biophotovoltaics in action

University of Cambridge researchers use algae to power computer

S INDEPENDENT

Scientists create computer powered by algae that will never run out of battery

3/14

Biophotovoltaics in action

Limitations

Outstanding questions

 What are the electron-transfer mechanisms between the biofilm and electrode?

• How could these be improved?

Mary Wood MSc day 08th October 2024 6 / 14

Techniques

Example: thylakoid membranes

lary Wood MSc day 08th October 2024 8 / 14

Example: thylakoid membranes

Mary Wood MSc day 08th October 2024 9 / 14

Example: thylakoid membranes

- Buckled bilayer with buffer layer.
- Only forms at < -400 mV (vs SHE).
- Irreversible adsorption.

- Bilayer flat but asymmetric.
- Potential-dependent reversible adsorption.
- Light-dependent proximity to electrode.

10 / 14

Example: Fe mapping

dissimilatory

assimilatory

Example: Fe mapping

Example: Fe mapping

Fe(II) detected on outer cell membrane (light/dark dependent).

Extracellular matrix—a big unknown

Mary Wood MSc day 08th October 2024 14 / 14