IceCube Experiment

&

Particle & Astroparticle Phenomenology

Contacts

D. Jason Koskinen

office 02.3.1.036 koskinen@nbi.ku.dk

Troels C. Petersen office 02.3.1.034 petersen@nbi.ku.dk

Oleg Ruchayskiy

office 02.3.1.052 oleg.ruchayskiy@nbi.ku.dk

Markus Ahlers office 02.3.1.040

markus.ahlers@nbi.ku.dk

The Elusive Neutrino

three neutrino flavours

- very small masses (unknown origin)
- large mixing between flavour and mass states (unknown mechanism)
- 2nd most abundant particle in the Universe (impact on cosmology)
- unique probe of high-energy astrophysics

Standard Model of Particle Physics

(+ Higgs boson)

IceCube Observatory

- Giga-ton optical Cherenkov telescope at the South Pole
- Optical modules attached to strings instrumenting 1 km³ of clear glacial ice
 - Collaboration of more than 300 scientists at 56 institutions in 14 countries.
 - Research focus @ NBI :
 - low-energy event selections, reconstructions & systematics
 - tau neutrino appearance
 - multi-messenger analyses
 - non-standard ν phenomena
 - IceCube Upgrade (from '25)

Atmospheric Neutrino Oscillations

- Muon neutrino disappearance in the 1-100 GeV range allows for precision measurement of atmospheric mixing parameters.
- IceCube @ NBI leads the current generation of oscillation analyses with DeepCore data.

cosmic rays

atmospheric muon neutrinos

Astrophysical Neutrinos

First observation of high-energy astrophysical neutrinos by IceCube in 2013.

"track event" (e.g. ν_{μ} CC interactions)

"cascade event" (*e.g.* NC interactions)

Event Reconstructions

- Improved angular and energy reconstructions are a key to improve sensitivities of neutrino telescopes.
- Machine-learning tools, e.g. based on graph neural networks are paving the way for future analyses with DeepCore data and IceCube-Upgrade.

GraphNeT

Graph Neural Networks for Neutrino Telescope Event Reconstruction

https://github.com/icecube/graphnet/

Angular reconstructions with GraphNet

contact:

Troels

Neutrino Astrophysics

Most energetic neutrino events (HESE 6yr (magenta) & $\nu_{\mu} + \overline{\nu}_{\mu}$ 8yr (red)) North contact: South Markus Earth • absorption $\left(+ \right)$ \bigoplus -180⁰ 180° Galactic Plane $\langle \cdot \rangle$ (\bullet) Ð Galactic -900

No significant steady or transient emission from known Galactic and extragalactic high-energy sources (*except for one candidate*).

Probe of Fundamental Physics

Heavy Neutral Leptons

- also known as "right-handed neutrinos" or "heavy sterile neutrinos"
- candidates for (warm) dark matter and/or mediators of leptogenesis
- possible astrophysical signatures: X-ray emission, Lyman- α forest
- phenomenology of direct experimental searches: SHiP, ATLAS @ CERN

[Boyarsky, Drewes, Lasserre, Mertens & Ruchayskiy, Prog.Part.Nucl.Phys. 104 (2019)]

Search for Hidden Particles (SHiP)

Backup Slides

IceCube Upgrade

- 7 new strings in the DeepCore region (~20m inter-string spacing)
- New sensor designs, optimized for ease of deployment, light sensitivity & effective area
- New calibration devices, incorporating lessons from a

decade of IceCube calibration mDON Ual optical sensor in an Ellipsoid PDO (403 models) 5001 Gen2 16 PM (277 mobility) 6(14 models)

- In parallel, IceTop surface enhancements (scintillators & radio antennas) for CR studie
- Scheduled deployment in 2025

000m

IceCube & Phenomenology

36 cm

36 cm

IceCube Upgrade Simulation

Improved low-energy detection efficiency with IceCube Upgrade [courtesy of **Tom Stuttard**]

Tau Neutrino Appearance

- 86% of ν_{τ} global data from IceCube
- High statistics of ν_{τ} allow to make precision tests of the 3-flavour oscillation paradigm.

ν^{CC}

 v_{μ}^{NC}

 10^{1}

 Current analyses efforts led by NBI will increase the data by a factor 4-5.

v

 μ_{Atmo}

Data

 10^{2}

L/E (km/GeV)

 10^{0}

3500

3000

2500

1500

1000

500

Events 2000

Astrophysical Flavours

Probe of Particle (Astro-)Physics

"Flavors of astrophysical vs with active-sterile mixing" [MA, Bustamante & Willesen, **JCAP** 07 (2021)]

[Bustamante & MA, PRL 122 (2019)]

Galactic Cosmic Rays Anisotropy

Cosmic ray anisotropies up to the level of **one-per-mille** at various energies

"Origin of Small-Scale Anisotropies in Galactic Cosmic Rays" [MA & P. Mertsch, **PPNP** 94 (2017)]

Cosmic Ray Anisotropy

"Cosmic ray small-scale anisotropies in quasi-linear theory" [P. Mertsch & MA, **JCAP** 11 (2019)]

"Small-Scale Anisotropies of Cosmic Rays from Relative Diffusion" [MA & P. Mertsch, **ApJL** 815 (2015)]

"Large- and Medium-Scale Anisotropies in the Arrival Directions of Cosmic Rays observed with KASCADE-Grande" [MA, **ApJL** 886 (2019)]

"Searching for All-Scale Anisotropies in the Arrival Directions of CRs above the Ankle" [MA, **ApJ** 863 (2018)]

Neutrino Selection I

Neutrino Selection II

- Outer layer of optical modules used as virtual veto region.
- Atmospheric muons pass through veto from above.
- Atmospheric neutrinos coincidence with atmospheric muons.
- **Cosmic neutrino** events can start inside the fiducial volume.
- High-Energy Starting Event (HESE) analysis

Status of Neutrino Astronomy

- High neutrino intensity compared to other cosmic backgrounds.
- Open questions:
 - ★ origin?
 - ★ spectral features?
 - * consistent MM emission?
- Some strong indications for individual sources:
 - ★ blazar TXS 0506+056
 - ★ Seyfert II galaxy NGC 1068
 - ★ Galactic plane
- Many interesting (but weak) correlations with other candidate sources.

GRBs as Multi-Messenger Sources

GRBs as Multi-Messenger Sources

