Neutrino Theory & Phenomenology (II)

Mariam Tórtola IFIC (CSIC/Universitat de València)

Niehls Bohr Institute, Copenhagen, 7-11 July 2025

SEVERO

OCHOA

Neutrino oscillations in vacuum and in matter

Neutrino oscillations

1957: Pontecorvo suggests oscillations between neutrinos & antineutrinos (only v_e).

B. Pontecorvo, J. Exp. Theor. Phys. 33 (1957) 549, Ibidem. 34 (1958) 247.

1962: Maki, Nakagawa and Sakata propose neutrino mixing between flavor eigenstates

 $\nu_1 = \nu_e \cos \delta + \nu_\mu \sin \delta,$ $\nu_2 = -\nu_e \sin \delta + \nu_\mu \cos \delta.$

2v mixing

true neutrinos

weak neutrinos

Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28 (1962) 870.

1969: Gribov & Pontecorvo calculated the neutrino oscillation probability (in vacuum) for the first time

V. Gribov, B. Pontecorvo, Phys. Lett. B28 (1969) 493.

$$P(\nu_e \longrightarrow \nu_e) = 1 - \frac{1}{2}\sin^2 2\theta \left(1 - \cos\frac{\Delta m^2 L}{2E}\right)$$

5 pytho TTOHMEROPH

First indication of v oscillations

1968: First observation of solar neutrinos by R. Davis in an underground experiment (Homestake gold mine, South Dakota) using 615 ton of C₂Cl₄ 2002 Nobel Prize in Physics

Raymond Davis Jr.

The solar neutrino problem

1980s-1990s: Confirmed by the following solar neutrino experiments

Explanation?

- \rightarrow theory (SM, SSM) was wrong
- \rightarrow experiments were wrong (all of them?)
- \rightarrow something was happening to neutrinos

The solar neutrino problem

Why results are different?

- ✓ Sensitive to different neutrinos:
 - CI, Ga: only sensitive to v_e

$$\nu_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^-$$

 $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

• Super-K:
$$v_e + v_\mu + v_\tau$$

Sensitive to different part of the neutrino spectrum

 $\nu_x + e^- \rightarrow \nu_x + e^-$

The Solar Neutrino Spectrum

Atmospheric neutrinos

Cosmic rays interacting with the Earth atmosphere producing pions and kaons, that decay generating neutrinos:

$$\pi^- \to \mu^- + \bar{\nu}_\mu \qquad \pi^+ \to \mu^+ + \nu_\mu$$
$$\mu^- \to e^- + \bar{\nu}_e + \nu_\mu \qquad \mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$$

$$\nu_e + N \rightarrow e^- + N'$$
 $\nu_\mu + N \rightarrow \mu^- + N'$

 \Rightarrow atmospheric neutrino detection in 360°

Atmospheric neutrinos

1965: First observation of **atmospheric neutrinos** in a gold mine in South Africa (F. Reines) and Kolar Gold Fields (India), at 3.2 and 2.4 km depth. $\nu_{\mu} + N \rightarrow \mu^{-} + N'$

1980's: Proton decay experiments for which atmospheric neutrinos were a source of background.

The atmospheric neutrino anomaly

1985: First indications of a deficit in the observed number of atmospheric v_{μ} at IMB.

1994: **Kamiokande** finds the v_{μ} deficit depends on the distance travelled by the neutrino and its energy.

The atmospheric neutrino anomaly

1998: Discovery of atmospheric neutrino oscillations in **Super-Kamiokande**

oscillation channel $\nu_{\mu} \!\rightarrow\! \nu_{\tau}$

→ first evidence for non-zero **neutrino masses**.

Sudbury Neutrino Observatory (SNO)

2001: Confirmation of flavor conversion in solar neutrinos in SNO (1 kton D₂O)

Mariam Tórtola (IFIC-CSIC/UValencia)

Neutrino School 2025

The solar neutrino problem

Other important results

2002: The reactor experiment KamLAND observed neutrino oscillations consistent with the solar anomaly.

2002: Results of the accelerator experiment K2K consistent with v_{μ} oscillations as in the atmospheric anomaly (MINOS, T2K, NOvA).

 $\begin{array}{l} \textbf{2011:} \nu_{\mu} \rightarrow \! \nu_{e} \, \text{oscillations observed in} \\ \text{long-baseline accelerator experiments.} \end{array}$

2011: Double Chooz confirmed reactor antineutrino oscillations in a baseline of ~1 km (Daya Bay, RENO).

KamLAND Coll, PRL 90 (2003) 021802

neutrino oscillations have been observed in solar, atmospheric, reactor and accelerator neutrino experiments.

Neutrino oscillations

Neutrino oscillations

Neutrino oscillations: formalism

Neutrino mixing

Mixing described by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix:

$$\nu_{\alpha L} = \sum_{k} U_{\alpha k} \nu_{kL}$$

NxN unitary matrix: NxN real parameters

 \rightarrow N(N-1)/2 mixing angles + N(N+1)/2 phases (not all observables!)

◆ Leptonic weak charged current:

$$J^{\rho} = 2 \sum_{\alpha} \overline{l_{\alpha L}} \gamma^{\rho} \nu_{\alpha L} = \sum_{\alpha} \sum_{k} \overline{l_{\alpha L}} \gamma^{\rho} \underbrace{\bigcup_{\alpha k} \nu_{k L}}_{\nu_{k L}}$$

◆ Lagrangian invariant under global phase transformations of Dirac fields:

$$l_{\alpha} \rightarrow e^{i\theta_{\alpha}} l_{\alpha}, \quad \nu_{k} \rightarrow e^{i\phi_{k}} \nu_{k}$$

$$J^{\rho} \rightarrow 2 \sum_{\alpha,k} \overline{l_{\alpha L}} e^{-i(\theta_{\alpha} - \phi_{1})} \gamma^{\rho} U_{\alpha k} e^{i(\phi_{k} - \phi_{1})} \nu_{k L}$$

$$\sum_{\alpha,k} (2N-1) phases from U reabsorbed in the fields$$

(N-1)(N-2)/2 physical phases

Neutrino mixing

For Majorana neutrinos, the lagrangian is NOT invariant under global phase transformations of the Majorana fields:

$$\nu_k \to e^{i\phi_k}\nu_k \qquad \Longrightarrow \qquad \nu_{kL}^T \mathcal{C}^\dagger \nu_{kL} \to e^{2i\phi_k}\nu_{kL}^T \mathcal{C}^\dagger \nu_{kL}$$

 \rightarrow only N phases can be eliminated by rephasing charged lepton fields (neutrino fields can not be rephased!!):

$$J^{\rho} \to 2 \sum_{\alpha,k} \overline{l_{\alpha L}} e^{-i\theta_{\alpha}} \gamma^{\rho} U_{\alpha k} \nu_{kL}$$

N(N+1)/2 - N = N(N-1)/2 physical phases for Majorana neutrinos

 $\rightarrow N(N-1)/2 \text{ physical phases: (N-1)(N-2)/2 Dirac phases } \rightarrow \text{ effect in v oscil.}$ $(N-1) \text{ Majorana phases } \rightarrow \text{ relevant for $0v$}\beta$

Neutrino mixing

2-neutrino mixing depends on 1 angle only (+1 Majorana phase)

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

3-neutrino mixing is described by 3 angles and 1 Dirac (+2 Majorana) CP violating phases.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

atmospheric + LBL

reactor + LBL

solar + KamLAND

Neutrino oscillations

Flavour states are admixtures of mass eigenstates:

 $\nu_{\alpha L} = \sum_{j} U_{\alpha j} \nu_{kL}$

Neutrino evolution equation:

$$-i\frac{d}{dt}|\nu_j\rangle = H|\nu_j\rangle$$

in the neutrino mass eigenstates basis \boldsymbol{v}_j :

$$H = \begin{pmatrix} E_i & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{pmatrix}$$

neutrino mass eigenstates evolve as planes waves *:

$$|\nu_j(t,L)\rangle = e^{-i(E_jt - p_jL)}|\nu_j\rangle$$

For ultrarelativistic neutrinos:

$$(E_j - p_j)L = \frac{E_j^2 - p_j^2}{E_j + p_j}L \simeq \frac{m_j^2}{2E}L$$

$$|\nu_j(t,L)\rangle = e^{-i\frac{m_j^2 L}{2E}} |\nu_j\rangle$$

Neutrino oscillations picture

Neutrino oscillation probability

Neutrino oscillation amplitude:

$$\begin{aligned}
detection & \text{production} \\
\mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}} = \langle \nu_{\beta}(t) | \nu_{\alpha}(0) \rangle = \sum_{j} \langle \nu_{\beta} | \nu_{j}(t) \rangle \langle \nu_{j}(t) | \nu_{j}(0) \rangle \langle \nu_{j}(0) | \nu_{\alpha} \rangle \\
& \text{propagation}
\end{aligned}$$
Neutrino oscillation probability: $P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{j} U_{\beta j} e^{-i \frac{m_{j}^{2} L}{2E}} U_{\alpha j}^{*} \right|^{2}$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{i>j} Re \left(U_{\alpha i}^{*} U_{\alpha j} U_{\beta i} U_{\beta j}^{*} \right) \sin^{2} \left(\frac{\Delta m_{ij}^{2} L}{4E} \right) + \\
& + 2 \sum_{i>j} Im \left(U_{\alpha i}^{*} U_{\alpha j} U_{\beta i} U_{\beta j}^{*} \right) \sin \left(\frac{\Delta m_{ij}^{2} L}{2E} \right)
\end{aligned}$$

* For a realistic derivation considering uncertainties in E and L and wave packet treatment see:

> Giunti & Kim, Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press, 2007.

Neutrino oscillation properties

Conservation of probability:

$$\sum_{\beta} P(\nu_{\alpha} \to \nu_{\beta}) = 1$$

Neutrino oscillations are sensitive only to mass squared differences:

$$\Delta m_{kj}^2 = m_k^2 - m_j^2$$

+ For **antineutrinos**: $U \rightarrow U^*$

Phases in the mixing matrix induce CP violation:

$$P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\overline{\nu_{\alpha}} \to \overline{\nu_{\beta}})$$

 Neutrino oscillations do not depend on the absolute neutrino mass scale and Majorana phases.

 Neutrino oscillations violate flavour lepton number conservation but conserve total lepton number.

Two possible mass orderings

- Δm²₂₁: solar + KamLAND (positive)
- Δm²₃₁: atmospheric + LBL accelerator + SBL reactor (sign?)

Two-neutrino oscillations

Two-neutrino mixing matrix:

$$\left(\begin{array}{cc}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{array}\right)$$

\bullet Two-neutrino oscillation probability ($\alpha \neq \beta$):

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| U_{\alpha 1} U_{\beta 1}^{*} + U_{\alpha 2} U_{\beta 2}^{*} e^{-i\frac{\Delta m_{21}^{2}L}{2E}} \right|^{2} = \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m_{21}^{2}L}{4E}\right)$$

♦ The oscillation phase:

$$\phi = \frac{\Delta m_{21}^2 L}{4E} = 1.27 \frac{\Delta m_{21}^2 [\text{eV}^2] L[\text{km}]}{E[GeV]}$$

 \rightarrow short distances, $\phi << 1$: oscillations do not develop, $P_{\alpha\beta} = 0$

 \rightarrow long distance, $\phi \sim 1$: oscillations are observable

 \rightarrow very long distances, $\phi >> 1$: oscillations are averaged out:

$$P_{\alpha\beta} \simeq \frac{1}{2}\sin^2 2\theta$$

2-neutrino oscillation probability

$$P_{\alpha\beta} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

Matter effects on neutrino oscillations

When neutrinos pass trough matter, the interactions with the particles in the medium induce an effective potential for neutrinos.

 $[\rightarrow$ the coherent forward scattering amplitude leads to an index of refraction for neutrinos. L.Wolfenstein, 1978]

→ modifies the **mixing between flavor states and mass eigenstates** as well as the eigenvalues of the Hamiltonian, leading to a different oscillation probability with respect to vacuum oscillations.

Effective matter potential

Effective four-fermion interaction Hamiltonian (CC+NC)

$$H_{\rm int}^{\nu_{\alpha}} = \frac{G_F}{\sqrt{2}} \overline{\nu_{\alpha}} \gamma_{\mu} (1 - \gamma_5) \nu_{\alpha} \sum_j \overline{f} \gamma_{\mu} (g_V^{\alpha, f} - g_A^{\alpha, f} \gamma_5) f$$

in ordinary matter: f=e-,p,n

To obtain the **matter-induced potential** we integrate over f-variables, For a non-relativistic unpolarised neutral medium

$$V_{\text{matt}} = \sqrt{2}G_F \operatorname{diag}(N_e - \frac{1}{2}N_n, -\frac{1}{2}N_n, -\frac{1}{2}N_n)$$

• only v_e are sensitive to CC (no μ , τ in ordinary matter)

♦ NC has the same effect for all flavours \rightarrow it has no effect on evolution (however it can be important in presence of sterile neutrinos)

for antineutrinos the potential has opposite sign

2-v oscillations in constant matter

♦ If N_e is constant (good approximation for oscillations in the Earth crust):

 $\rightarrow \theta_M$ and ΔM^2 are constant as well

 \rightarrow we can use vacuum expression for oscillation probability, replacing "vacuum" parameters by "matter" parameters:

$$P_{\alpha\beta} = \sin^2 2\theta_M \sin^2 \left(\frac{\Delta M^2 L}{4E}\right)$$
$$\sin^2 2\theta_M = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - A)^2}$$
$$A = \frac{2EV}{\Delta m^2}$$
$$\Delta M^2 = \Delta m^2 \sqrt{\sin^2 2\theta + (\cos 2\theta - A)^2}$$

There is a **resonance** effect for $A = cos2\theta \rightarrow MSW$ effect

Wolfenstein, 1978. Mikheyev & Smirnov, 1986

2-v oscillations in constant matter

♦A << cos2θ, small matter effect → vacuum oscillations: $θ_M = θ$

A >> cos2θ, matter effects dominate → oscillations suppressed: $θ_M ≈ π/2$

 $A = cos2\theta$, resonance takes place → maximal mixing $θ_M ≈ π/4$

 \rightarrow **resonance condition** is satisfied for neutrinos for $\Delta m^2 > 0$

for antineutrinos for $\Delta m^2 < 0$

2-v oscillations in varying matter

• If N_e varies with time (nu beam propagating through the Earth or the Sun)

 \rightarrow diagonalization of H_{matt} at every instant to obtain $\theta_M(t)$ and $\Delta M^2(t)$

 \rightarrow evolution of the instantaneous eigenstates in matter v_i^m :

$$i\frac{d}{dt}\nu_{\alpha} = i\frac{d}{dt}\left[U(\theta_{M})\nu_{i}^{m}\right] = i\frac{d}{dt}U(\theta_{M})\nu_{i}^{m} + U(\theta_{M})i\frac{d}{dt}\nu_{i}^{m}$$

On the other hand:

$$i\frac{d}{dt}\nu_{\alpha} = H_{f}\nu_{\alpha} = U(\theta_{M})H_{\text{diag}}\left(\frac{\Delta M^{2}}{4E}\right)U(\theta_{M})^{\dagger}\nu_{\alpha} = U(\theta_{M})H_{\text{diag}}\left(\frac{\Delta M^{2}}{4E}\right)\nu_{i}^{m}$$

$$i\frac{d}{dt}\left(\begin{array}{c}\nu_1^m\\\nu_2^m\end{array}\right) = \left(\begin{array}{cc}-\Delta M^2/4E & -i\theta_M\\i\dot{\theta}_M & \Delta M^2/4E\end{array}\right)\left(\begin{array}{c}\nu_1^m\\\nu_2^m\end{array}\right)$$

 \rightarrow the presence of off-diagonal terms induce the mixing of $\nu_i{}^m$ states

Adiabatic evolution

$$i\frac{d}{dt} \begin{pmatrix} \nu_1^m \\ \nu_2^m \end{pmatrix} = \begin{pmatrix} -\Delta M^2/4E & -i\dot{\theta}_M \\ i\dot{\theta}_M & \Delta M^2/4E \end{pmatrix} \begin{pmatrix} \nu_1^m \\ \nu_2^m \end{pmatrix}$$
• For small off-diagonal terms: $|\dot{\theta}_M| \ll \Delta M^2/4E$

 \rightarrow the transitions between the instantaneous eigenstates $\nu_1{}^m$ and $\nu_2{}^m$ are suppressed: adiabatic approximation.

Adiabaticity condition:

$$\gamma^{-1} \equiv \frac{2\theta_M}{\Delta m^2/2E} = \frac{\sin 2\theta \Delta m^2/2E}{(\Delta M^2/2E)^3} |\dot{V}_{CC}| \ll 1$$

adiabaticity parameter from the instantaneous expression of $\theta_{\rm M}$ the typical value in the Sun: $\gamma^{-1} \sim \frac{\Delta m^2}{10^{-9} {\rm eV}^2} \frac{{\rm MeV}}{E}$

 \rightarrow adiabaticity applies up to 10 GeV

Solar neutrinos: the MSW effect

2nu approx: electron neutrino is born at the center of the Sun as:

$$|\nu_e\rangle = \cos\theta_M |\nu_1^m\rangle + \sin\theta_M |\nu_2^m\rangle$$

 $\rightarrow v_1^m$ and v_2^m evolve adiabatically until the solar surface and propagate in vacuum from the Sun to the Earth:

$$P(\nu_e \to \nu_e) = P_{e1}^{\text{prod}} P_{1e}^{\text{det}} + P_{e2}^{\text{prod}} P_{2e}^{\text{det}}$$

$$P_{e1}^{\text{prod}} = \cos^2 \theta_M , \quad P_{1e}^{\text{det}} = \cos^2 \theta$$
$$P_{e2}^{\text{prod}} = \sin^2 \theta_M , \quad P_{2e}^{\text{det}} = \sin^2 \theta$$

$$P_{ee} = \cos^2 \theta_M \cos^2 \theta + \sin^2 \theta_M \sin^2 \theta$$

Solar neutrinos: the MSW effect

♦ In the center of the Sun:
$$A = \frac{2EV}{\Delta m^2} \simeq 0.2 \left(\frac{E}{\text{MeV}}\right) \left(\frac{8 \times 10^{-5} \text{eV}^2}{\Delta m^2}\right)$$

♦ Since resonance occurs for A = $cos(2\theta) = 0.4 \rightarrow E_{res} \approx 2 \text{ MeV}$

Mass hierarchy in solar neutrinos

Mixing angle in matter:

A

$$\sin^2 2\theta_M = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - A)^2}$$
$$= \frac{2EV}{\Delta m^2}$$
for antineutrinos

 \rightarrow resonance condition A = cos2θ is satisfied for neutrinos for Δm^2 > 0 and for antineutrinos for $\Delta m^2 < 0$ (change of sign in Vcc)

Matter effects observed in solar neutrino data are in agreement with the presence of a resonance as predicted above:

 \rightarrow since solar neutrinos are v_e:

$$\Delta m_{21}^2 > 0 \rightarrow m_2 > m_1$$

Earth regeneration effect

10⁻³

 10^{-4}

10⁻⁵ 1

10⁻⁶

 Δm^2_{SOL} [eV²]

2(N-D)/(N+D)

1005

-0.00

 Neutrinos observed at night are also affected by Earth matter effects

If neutrinos cross only the Earth mantle, P_{2e}^{det} is well approximated by the evolution of a constant potential:

$$P_{2e}^{\text{det}} = \sin^2 \theta + f_{\text{reg}}$$
prob. during day regeneration term
$$f_{\text{reg}} = \frac{4EV_{CC}}{\Delta m^2} \sin^2 2\theta_E \sin^2 \frac{\pi L}{L_{\text{osc}}} \rightarrow \text{day-night asymmetry:}$$

$$P_{ee}^{\text{night}} = P_{ee}^{\text{day}} - \cos 2\theta_M f_{\text{reg}} \qquad A_{\text{DN}} \equiv 2\frac{(P_N - P_D)}{P_N + P_D}$$

+ For the measured solar neutrino parameters $f_{\text{reg}} \sim +1\%$

0.001

0.005

0.02

0.1

Matter effects in atmospheric V's

 Atmospheric neutrinos interact with the Earth mantle and core

✓ no matter effects in $ν_µ → ν_τ$ channel

 \checkmark MSW resonance in $\nu_{\mu} \!\rightarrow\! \nu_{e} \, channel$

$$\tan 2\theta_m = \frac{\frac{\Delta m^2}{4E} \sin 2\theta}{\frac{\Delta m^2}{4E} \cos 2\theta \mp \sqrt{2}G_F N_e}$$

(-) neutrinos (+)antineutrinos

→ Matter effects on the atmospheric neutrino flux are sensitive to the mass ordering.

 \blacktriangleright they are harder to observe since $P_{\mu e} \propto \theta_{13}$

Matter effects in atmospheric V's

NO

IO

de Salas et al, arXiv:1806.11051

At E_{\sim} 3-8 GeV: MSW resonance for neutrinos and NO mass spectrum.

For antineutrinos \Rightarrow the resonance appears in IO