Neutrino Theory & Phenomenology (III)

Mariam Tórtola IFIC (CSIC/Universitat de València)

Niehls Bohr Institute, Copenhagen, 7-11 July 2025

SEVERO

OCHOA

Three-Neutrino phenomenology

The three-flavour v picture

neutrino mixing

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha} & 0 & 0 \\ 0 & e^{i\beta} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 3 mixing angles: θ₁₂, θ₂₃, θ₁₃
 3 CP phases: 1 Dirac + 2 Majorana
 3 masses: m₁, m₂, m₃
 - \Rightarrow absolute neutrino mass: m_0
 - \Rightarrow two mass splittings:

 $\Delta m^2_{21}, \Delta m^2_{31}$

neutrino mass spectrum

Solar neutrinos

Reactor neutrinos

Atmospheric neutrinos

Accelerator neutrinos

Solar sector: θ_{12} , Δm^2_{21}

Atmospheric sector: θ_{23} , Δm^2_{31}

Reactor sector (SBL): θ_{13} , Δm^2_{31}

Accelerator sector: θ_{23} , Δm^2_{31}

Solar sector: θ_{12} , θ_{13} , Δm^2_{21}

Reactor sector (SBL): θ_{13} , Δm^2_{31}

Atmospheric sector: θ_{23} , θ_{13} , Δm^2_{31} , δ

Accelerator sector: θ_{23} , θ_{13} , Δm^2_{31} , δ

Three-neutrino oscillations

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} Re(U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*) \sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right) + 2\sum_{i>j} Im(U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*) \sin\left(\frac{\Delta m_{ij}^2 L}{2E}\right)$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

atmos + accelSBL reac + accelsolar + LBL reac $(\nu_{\mu} \rightarrow \nu_{\tau})$ $(\nu_{e} \rightarrow \nu_{x} \text{ and } \nu_{\mu} \rightarrow \nu_{e})$ $(\nu_{e} \rightarrow \nu_{x})$

$$\begin{array}{ll} \textbf{Maximal} & \Delta m_{ij}^2 L \\ \textbf{sensitivity at} & \frac{\Delta m_{ij}^2 L}{4E} \sim \frac{\pi}{2} = 1.27 \frac{\Delta m_{ij}^2 [eV^2] L[km]}{E[GeV]} \end{array}$$

M Rayner, CERN Courier, 2020

Three-neutrino oscillation parameters

Denton et al, Snowmass Neutrino Frontier: NF01 Report [arXiv:2212.00809]

Global fit to v oscillation parameters

Global fit to v oscillation parameters

relative $l\sigma$ uncert

	1	2	-	
parameter	best fit $\pm 1\sigma$	3σ range		
$\Delta m_{21}^2 \ [10^{-5} \mathrm{eV}^2]$	$7.55\substack{+0.22\\-0.20}$	6.98-8.19	2.7 %	
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (NO)}$	$2.50 {\pm} 0.02$	2.43 - 2.57	000	mass
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] (\text{IO})$	2.40 ± 0.02	2.33-2.46	0.9 %	ordering?
$\sin^2 \frac{\theta_{12}}{10^{-1}}$	$3.04 {\pm} 0.16$	2.57 - 3.55	5.4%	
$\sin^2 \theta_{23} / 10^{-1} (\text{NO})$	$5.60^{+0.13}_{-0.22}$	4.32 - 5.96	4.8%	
$\sin^2 \theta_{23} / 10^{-1} $ (IO)	$5.57^{+0.14}_{-0.20}$	4.34 - 5.93		octant?
$\sin^2 \frac{\theta_{13}}{10^{-2}}$ (NO)	$2.20^{+0.07}_{-0.04}$	2.05 - 2.38		
$\sin^2 \theta_{13} / 10^{-2} $ (IO)	$2.23_{-0.06}^{+0.05}$	2.06 - 2.39	2.5%	
δ/π (NO)	$1.12^{+0.16}_{-0.12}$	0.76 - 2.00	10_18%	maximal CP
δ/π (IO)	$1.50^{+0.13}_{-0.14}$	1.11 - 1.87	10-10/0	violation??

Solar sector: θ_{12} , θ_{13} , Δm^2_{21}

The solar sector

Solar experiments have measured neutrino disappearance for ~ 50 years

The solar sector

- θ₁₂ measurement dominated
 by solar neutrino data
- ♦ Am²₂₁ is better measured by KamLAND.
- 2σ mismatch between the values of Δm²₂₁ measured by solar and KamLAND

$$\sin^2\theta_{12} = 0.304 \pm 0.016$$

 $\Delta m_{21}^2 = (7.55 \pm 0.21) \times 10^{-5} \text{ eV}^2$

Reactor sector: θ_{13} , Δm^2_{31}

Reactor neutrinos

Production: fission processes in nuclear reactors

Detection: inverse beta decay

1 GW reactor: more than 10²⁰ antineutrinos/s

SBL reactor experiments

SBL reactor experiments

2 reactors + 1 ND + 1 FD (10 ton)

6 reactors + 4 ND + 4 FD (20 ton)

6 reactors + 1 ND + 1 FD (16 ton)

The reactor sector

$$P_{ee} = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

Double Chooz first measured
 θ₁₃ but now its precision is not
 comparable.

Precision dominated by
 RENO and Daya Bay.

$$\sin^2\theta_{13} = 0.0221 \pm 0.0006$$

$$|\Delta m_{31}^2| = (2.56 \pm 0.05) \times 10^{-3} \text{ eV}^2$$

Atmospheric sector: θ_{23} , θ_{13} , Δm^2_{31} , δ

The atmospheric sector

Super-Kamiokande detects atmospheric neutrinos since 1996. Neutrino oscillations discovery in 1998

(1 km mountain overburden)

$$P\nu_{\mu} \rightarrow \nu_{\mu} \simeq 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2}{4E}L\right)$$

SK Collab, PRD 109 (2024) 072014

 \rightarrow very good sensitivity to θ_{23} and Δm_{32}^2

39.3 m

NBI Neutrino School 2025

The atmospheric sector

IceCube detects atmospheric neutrinos using 1 km³ of ice as detector at the South Pole

→ more precise than Super-Kamiokande

The atmospheric sector

ANTARES observed atmospheric neutrinos at the Mediterranean Sea

 \rightarrow results in agreement with oscillations in the channel $v_{\mu} \rightarrow v_{\tau}$

Accelerator sector: θ_{23} , θ_{13} , Δm^{2}_{31} , δ

The accelerator sector

◆ Designed to check the atmospheric neutrino oscillation channel
 ◆ L/E ~500 km/GeV to be sensitive to ^{Am2}₃₁ ~ few 10⁻³ eV²
 ◆ Combine near detector + far detector

The accelerator sector

 ν_{μ} and $\overline{\nu}_{\mu}$ disappearance

$$P(\nu_{\mu} \to \nu_{\mu}) = P(\bar{\nu}_{\mu} \to \bar{\nu}_{\mu}) = 1 - \sin^2(2\theta_{23})\sin^2\left(1.27\frac{\Delta m_{32}^2 L}{E}\right)$$

 \rightarrow only sensitive to sin²2 θ_{23} and Δm^{2}_{32}

 ν_e and $\overline{\nu}_e$ appearance (in matter)

$$P(\overline{\nu_{\mu}} \to \overline{\nu_{e}}) \simeq \sin^{2}\theta_{23} \frac{\sin^{2} 2\theta_{13}}{(A-1)^{2}} \sin^{2}[(A-1)\Delta_{31} \qquad \qquad \alpha = \Delta m_{21}^{2}/\Delta m_{31}^{2} \sim 1/30$$

$$J_{0} = \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \cos \theta_{13}$$

$$A = (\mp) 2\sqrt{2}G_{F}n_{e}E/\Delta m_{31}^{2}$$

$$(\mp)\alpha \frac{J_{0} \sin \delta_{CP}}{A(1-A)} \sin \Delta_{31} \sin(A\Delta_{31}) \sin[(1-A)\Delta_{31}]$$

$$+\alpha \frac{J_{0} \cos \delta_{CP}}{A(1-A)} \cos \Delta_{31} \sin(A\Delta_{31}) \sin[(1-A)\Delta_{31}] + O(\alpha^{2})$$

→ Sensitivity to δ_{CP} , the mass ordering (sign A) and the octant of θ_{23}

Atmospheric & accelerator sector

 $(\sin^2\theta_{23} - \Delta m^2_{31})$ regions from individual experiments

- Great agreement among all the experiments
- Best sensitivity obtained at T2K (closely followed by NOvA and DeepCore)
- IC-DeepCore starts being competitive with LBL accelerator experiments

Global fit to v oscillation parameters

Global fit to v oscillation parameters

JUNO reactor experiment

JUNO reactor experiment

► precision and mass ordering

V. Cerrone @ NOW 2024

 \blacklozenge 3 σ sensitivity in ~7 years of data

KM3NeT-ORCA

KM3NeT: two underwater neutrino telescopes at the Mediterranean, ARCA (astrophysical neutrinos) and ORCA (atmosp. neutrinos)

JUNO + atmospheric experiments

IceCube Upgrade + JUNO

ORCA + JUNO

A. Terliuk @ NOW 2024

P. Migliozzi @ NOW 2024

 Up to 3σ sensitivity to neutrino mass ordering (5σ with JUNO)

 4-6σ sensitivity to neutrino MO by 2030 (below 3σ with JUNO only)

Global fit to v oscillation parameters

The CP phase

Observation of the appearance channels $\nu_{\mu} \rightarrow \nu_{e}$ in atmospheric and accelerator experiments and allows to measure the $\delta_{\rm CP}$

Next generation of v experiments

DUNE

- 1.2 MW wide-band beam from FNAL to SURF (1300km)
- 4x10 kt Liquid Argon TPCs
- capability to probe 2nd oscillation max
- great sensitivity to mass ordering

Hyper-Kamiokande

188 kton water Cerenkov
 T2HK: great sensitivity to δ_{CP}
 T2HKK (1100km) will have similar sensitivities as DUNE

Next generation of v experiments

Best-case oscillation scenarios:

 $>5\sigma$ mass ordering sensitivity in 1 year $>3\sigma$ CPV sensitivity in 3.5 years Worst-case oscillation scenarios:

>5 σ mass ordering sensitivity in 3 years +10yr: CPV over 75% of δ_{CP} values at >3 σ

Next generation of v experiments

Hyper-Kamiokande

>5σ CPV discovery for >60% of δ_{CP}
 1σ resolution of δ_{CP} in 10 yrs:
 ~20° (~6°) for δ_{CP} = -90° (0°)

S. Moriyama @ Neutrino'24

>5σ sensitivity to mass
 ordering for all values of
 θ₂₃ for NO

Neutrino masses

From oscillations we know that (at least 2) neutrinos do have mass!!

What about the absolute mass scale? Do we have information?

From oscillations:

$$m_{\nu} \ge \sqrt{\Delta m_{31}^2(\text{NO})} \gtrsim 0.05 \,\text{eV}$$

Neutrino mass scale

* Relaxed to $\Sigma m_v < 0.11 \text{ eV}$ (Naredo-Tuero, arXiv:2407.13831)

Neutrino physics beyond the Standard Model

Beyond the 3-neutrino scenario

- Neutrino results suggest the presence of physics BSM to explain:
 - Iight neutrino masses (mass generation mechanism)
 - Iarge neutrino mixing compared to quark sector (flavour problem)
 - ✓ short-distance anomalies (LSND, reactor and Ga anomalies)
- Many different BSM scenarios analyzed in the literature:
 - presence of light sterile neutrinos
 - mixing with heavy sterile neutrinos: non-unitary neutrino mixing
 - Investigation of the second standard interactions (NSI) with matter
 - ✓ exotic neutrino electromagnetic properties

⇒ the presence of new physics may affect our current description of 3-nu oscillations as well as the future measurements

Global fit to v oscillation parameters

Sterile neutrinos

sterile neutrino = singlet fermion of the Standard Model

 \rightarrow it has no interactions (exceptions: Higgs, mixing and physics BSM)

Motivations: sterile neutrinos can explain...

 \diamond neutrino oscillation anomalies (m ~ eV)

small neutrino masses (seesaw mechanism, m > TeV-M_{Planck})

♦ baryon asymmetry of the universe (leptogenesis, m>> 1 GeV)

(part of) the dark matter of the universe.

Hints for a light sterile neutrino

Anomalies in neutrino experiments with very short

baselines source-detector (10-100 m)

Explained with neutrino oscillations with $\Delta m^2 \sim 1 \text{ eV}^2$ in the channels:

$$\overline{\nu}_{\mu} \to \overline{\nu}_{e} \qquad \qquad \overline{\nu}_{e} \to \overline{\nu}_{x} \qquad \qquad \nu_{e} \to \nu_{x}$$

Interpretation of the anomalies

 $\Delta m^2{}_{sol} \sim 8x10^{\text{-5}}\,eV^2 \qquad \Delta m^2{}_{atm} \sim 2x10^{\text{-3}}\,eV^2 \qquad \Delta m^2{}_{LSND} \sim 1\,\,eV^2$

 \Rightarrow Can only be accommodated considering four neutrino states

NBI Neutrino School 2025

(2+2)

 Δm^2

2+2 neutrino scheme

This scheme requires the presence of sterile neutrinos either in solar or atmospheric neutrinos

However, solar and atmospheric data show a strong preference for active oscillations

Hints for a light sterile neutrino

Anomalies in neutrino experiments with very short

baselines source-detector (10-100 m)

Explained with neutrino oscillations with $\Delta m^2 \sim 1 \text{ eV}^2$ in the channels:

$$\overline{\nu}_{\mu} \to \overline{\nu}_{e} \qquad \qquad \overline{\nu}_{e} \to \overline{\nu}_{x} \qquad \qquad \nu_{e} \to \nu_{x}$$

Testing the LSND anomaly

Experiments designed to check LSND signal: MiniBooNE & MicroBooNE

The reactor anomaly

New theoretical models and reactor results indicate that the neutrino flux for ²³⁵U should be reduced by 5-10 % with respect to previous estimations

P. Vogel, Neutrino 2022

Current status of the Ga anomaly

Recently confirmed by **BEST** (Baksan Experiment on Sterile Transitions) at 4σ

Barinov et al, PRC 2022

1.2

1.1

1.0

0.8

0.7

0.6

SAGECT

rmeas. /rpred. 0.9

51

Hints for a light sterile neutrino

Anomalies in neutrino experiments with very short

baselines source-detector (10-100 m)

Explained with neutrino oscillations with $\Delta m^2 \sim 1 \text{ eV}^2$ in the channels:

$$\overline{\nu}_{\mu} \to \overline{\nu}_{e} \qquad \qquad \overline{\nu}_{e} \to \overline{\nu}_{x} \qquad \qquad \nu_{e} \to \nu_{x}$$

Global fit in 3+1 neutrino scheme

Dentler et al, JHEP 2018 [See also Giunti et al]

eV-sterile neutrino in Cosmology

- In Cosmology, sterile neutrinos with eV masses contribute to:
 - $\Sigma m_v = sum of neutrino masses$ $N_{eff} = relativistic degrees of freedom$
- Considering the presence 4th light sterile neutrino:

$$\rightarrow \sum m_{\nu} \gtrsim 0.05 \,\mathrm{eV} + \sqrt{\Delta m_{41}^2} > 1 \,\mathrm{eV}$$

- $\rightarrow N_{eff} \approx 4$
- Cosmological constraints:

$$N_{\rm eff} = 2.96^{+0.34}_{-0.33}$$

Strong tension between the eV sterile neutrino hypothesis and cosmology

Non-unitary light neutrino mixing

Most models of neutrino masses include new extra heavy states

Ex: type I seesaw, $\begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix} \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix}$

 \rightarrow (3x3) light neutrino mixing matrix U is **non-unitary** in general

NxN non-unitary mixing matrix described with 2N²-(2N-1) parameters

 \rightarrow 13 parameters are needed to describe a non-unitary (3x3) matrix

 \rightarrow besides the 4 standard ones (θ_{ij} and δ_{CP}), 9 more parameters are needed

General parameterization for non-unitary NxN mixing matrix

$$U^{n \times n} = \begin{pmatrix} N & W \\ V & T \end{pmatrix} \quad \text{with} \quad N = N^{NP} U^{3 \times 3} = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} U^{3 \times 3}$$

Escrihuela et al, PRD92 (2015) See also Xing, PRD2012 for n=6

 $\rightarrow \alpha_{ii}$ real, α_{ij} complex: 9 new parameters

NU neutrino oscillations in DUNE

$$P_{\mu e} = (\alpha_{11}\alpha_{22})^2 P_{\mu e}^{3\times3} + \alpha_{11}^2 \alpha_{22} |\alpha_{21}| P_{\mu e}^I + \alpha_{11}^2 |\alpha_{21}|^2 \quad \text{with} \quad P_{\mu e}^I(\phi)$$

The new phases (φ) will modify the standard oscillation picture in LBL experiments, such as DUNE

Escrihuela et al, NJP 2017

Miranda, MT, Valle, PRL 117 (2016)

 \rightarrow (S, $\phi)$ degeneracies in $P_{\mu e}$ for $E \gtrsim$ 3 GeV spoil sensitivity to δ

DUNE CP sensitivity with NU

Fernández-Martínez et al (DUNE-BSM Working Group)

- \rightarrow The sensitivity to CP violation might be spoiled in the absence of priors on NU
- \rightarrow With priors based on current bounds (10⁻³-10⁻²), the effect is less dramatic

Non-standard neutrino interactions

New 4-fermion interactions involving neutrinos

CC-NSI: $\mathcal{L}_{CC-NSI} = -2\sqrt{2}G_F \epsilon_{\alpha\beta}^{ff'X} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\ell_{\beta}\right) \left(\bar{f}'\gamma_{\mu}P_Xf\right)$

 \Rightarrow effect on neutrino production and detection

(X = L,R)

NC-NSI: $\mathcal{L}_{NC-NSI} = -2\sqrt{2}G_F \epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$

 $\epsilon_{\alpha\beta} \neq 0 \quad \rightarrow \text{NSI violate lepton flavor (FC-NSI)}$ $\epsilon_{\alpha\alpha} - \epsilon_{\beta\beta} \neq 0 \quad \rightarrow \text{NSI violate lepton universality (NU-NSI)}$ $\Rightarrow \text{ mainly affecting neutrino propagation in matter:}$ (but also detection, e.g., Super-K and Borexino)

NSI may affect the 3-neutrino oscillation picture:

 \Rightarrow precision measurements at current experiments

 \Rightarrow sensitivity reach of upcoming experiments (degeneracies)

Models leading to sizeable NSI

 \blacklozenge models with light mediator: $m_X \sim 10$ MeV, $\varepsilon \sim 1$ with $g_X \sim 10^{-4}\text{--}10^{-5}$

 \Rightarrow bounds on production avoided due to small coupling

 \Rightarrow NSI effect suppressed in scattering exp. with q² >> M_X^2 (NuTeV, CHARM, q ~ GeV)

 \Rightarrow BBN bounds can be avoided with $m_X \gtrsim 10 \; MeV$

$10 \text{ MeV} < m_X < 1 \text{ GeV}$

Mariam Tórtola (IFIC-CSIC/UValencia)

 G_F^{-1}

NSI in the solar sector

 \Rightarrow tension between preferred value of $\Delta m^2{}_{21}$ from KamLAND and solar data

 $\Rightarrow \Delta m^2{}_{21}\, preferred$ by KamLAND predicts steep upturn and smaller D/N asymmetry

♦ NSI ($\varepsilon \sim 0.3$) can reconcile both results:

- \Rightarrow flatter spectrum at intermediate E-region
- \Rightarrow larger D/N asymmetries can be expected

Escrihuela et al, PRD80 (2009); Coloma et al, PRD96 (2017)

Maltoni & Smirnov, EPJ 2015

NSI at future LBL experiments

(θ_{23} - $\epsilon_{\tau\tau}$) degeneracy in DUNE

Gouvea and Kelly, NPB 2016

Coloma, JHEP 2016

NSI at future LBL experiments

NSI can significantly spoil DUNE's sensitivity to:

Masud and Mehta, PRD 2016

The T2K-NOvA δ_{CP} tension

• NSI may include new sources of CP violation besides δ_{CP} : $\epsilon_{\alpha\beta} = |\epsilon_{\alpha\beta}| \exp(i\phi_{\alpha\beta})$

• CP-violating NSI with a new complex phase $\phi_{e\mu}$ or $\phi_{e\tau}$ close to maximal with NSI couplings $\epsilon_{e\mu}$ or $\epsilon_{e\tau}$ of the order of 0.2 may reconcile T2K and NOvA results.

Chatterjee and Palazzo, PRL 2021

Denton et al, PRL 2021

BSM searches with CEvNS experiments

Physics potential of CEvNS

Freedman, PRD 1974

+ Standard Model tests: nuclear physics, EW measurements (θ_W)

 BSM searches: neutrino electromagnetic properties, NSI, couplings with new mediator particles,...

Neutrino magnetic moment

- ◆ Minimal SM extension (with m_{ν}) predicts $\mu_{\nu} \simeq 3 \times 10^{-19} \left(\frac{m_{\nu}}{\text{eV}}\right) \mu_B$ → larger in BSM
- The (effective) neutrino magnetic moment gives extra contribution to **CEvNS** cross section:

$$\frac{d\sigma_{\nu_{\ell}\mathcal{N}}}{dE_{nr}}\Big|_{CE\nu NS}^{MM} = \frac{\pi\alpha_{EM}^{2}}{m_{e}^{2}}\left(\frac{1}{E_{nr}} - \frac{1}{E_{\nu}}\right)Z^{2}F_{W}^{2}(|\vec{q}|^{2})\Big|_{\mu_{B}}^{\mu_{\nu_{\ell}}}\Big|_{\mu_{B}}^{2}$$

$$\int_{CSI}^{12} \int_{CSI+LAr}^{LAr} \int_{CSI}^{CSI+LAr} \int_{CSI}^{CSI+LAr} \int_{CSI}^{CSI+LAr} \int_{CSI}^{CSI+LAr} \int_{CI}^{CSI} \int_{0}^{10^{-10}} \int_{10^{-9}}^{10^{-9}} \int_{10^{-8}}^{10^{-9}} \int_{\mu_{\mu_{\ell}}}^{10^{-9}} \int_{10^{-8}}^{90\%} C.L. \text{ limits}$$

$$\mu_{\nu_{e}} < 3.6 (3.8) \times 10^{-9} \mu_{B}$$

$$\mu_{\nu_{\mu}} < 2.4 (2.6) \times 10^{-9} \mu_{B}$$
Data from COHERENT
Experiment

Mariam Tórtola (IFIC-CSIC/UValencia)

9

Non-standard interactions

