

Cosmology with the furthest binary black holes

Jose María Ezquiaga

Niels Bohr Institute jose.ezquiaga@nbi.ku.dk ezquiaga.github.io

THE CENTER OF GRAVITY

VILLUM FONDEN

The exploration of the *distant Universe* is powered by gravitational lensing

Gravitational lensing only becomes **more** probable at *higher* redshifts

All sources are lensed. A fraction of them with large magnifications

Magnification μ

4

Gravitational waves from compact binary coalescences are *unique* cosmic messengers

- Compact binaries merge at cosmological distances
- Signals are understood from first principles (solving numerical relativity)
- GWs travel unaltered through the Universe, except for gravitational lensing
- GW wavelengths are of astrophysical scale

Age of the Universe

The era of gravitational wave astronomy is here!

01 2015 - 2016			02 2016 - 2017	- ants	-	dis?		1			03a+0 2019 - 2020	
· · ·	23 14	14 2.2	а го	1 95	ai _ 34	.	• •	is is	.	40 29	88 22	ж в
63 GW160911	36 omianis	21 GATER26	49 CWINCION	18 cwrixeece	8C Contraction	56 cwitoece	53 cwisters	≤2.8 cwmaan	60 cvvicoera	65 owneess	105 cwieokcalosiery	41 CWIEGHORJE BOR
30 8.3	35 24	48 32	4 32	• • 2 14	107 0 77	43 28	23 15	36 19	39 28	3 7 25	66 4	5.00
37 Sw19040	56 CW190-715_053554-	76 Giango 475_134508	70 5%190-021,275354	3.2 ctv/180425	175 cwr80+36,30642	69 cvmpcecs_res+o+	35 5w190592_180714	52 GW/180513,205423	65 CTV/79/0514_065416	59 GW-90907_C59001	101 CW19C5H9,158544	155 cwtexta
42 58	37 28	[•] • ⁴	57 . 56	35 24	54 41	67 38	12 8.4	IB 13	87 21	13 78	12 64	38 .29
71 GW-90561-0743821	56 cwecszi cases	111 CW190682 172527	87 CWED3630 030421	56 CWE0639 185405	90 GWE0701-205906	99 GWDD706 25641	19 GW100700-093536	30 GW190008-232407	55 GW18070-28214	20 5w190750.000896	17 GWID0725 TW758	64 GW130727 004534
12 61	12 29	37 27	40 52	23 26	32 26	24 10	** * ** *	15 24	44 24	82 51 •	8.9 5	27 16
20 cw/#0728.084510	57 54/190731_140636	62 cwiscess.ozztol	76 GW150605_20057	25 cw190844	55 5w190518_068405	33 GW180825,068509	75 544190800,82607	57 CW18C945,225702	65 GW150616,200655	11 Sw190907_114630	13 04/190624_021845	35 0w130123_222545
40 25		17 9.0	12 V.9	11 VV	× *	29 50	12 8.4		11 67	27 B	17 82	25 B
61 cwmc996_cscate	102 54/10229_00764	19 5w196530_33561	19 GW15101_012549	18 CWIRDES_03721	107 ciwnstner_mazer	34 ownerna.comosa	20 cwmmitr_msasa	76 54/14127_550777	17 EW/19829_114029	45 5w190264_00529	19 5.67100.001000	41 (%)1175_727852
12 2.7	31 1.3	4 0 35	49 57	9 19	36 28	50 14	4 5	34 29	10 7.3	58 27	51 12	36 . 77
19 CW191216_200338	32 CW190710_163120	76 GW19632_038537	82 SW198350_160456	n Cwcowcs, iear ae	61 GW200TG_165939	7.2 GW20016_012806	71 сиссопансодот	60 SW200129,065158	17 cwccoace_15/313	63 cwcooae_130777	51 5W200208,22266	C3+280_90502WD
0 24 2.8	51 0 30	38 • 28	87 0 0	39 28	40 33	19 14	38 20	28 15	36 14	5. 39	15 78	34 14
27	78	62 (W200512 104-55	141 avecase octaze	64	69 54/201724 222234	32 GW000005 (0042)	56 (weather mem	42 5w200306.003784	47 Gw700000 107000	59 6w20030 IIS033	20 (wcmite ::stre	53 (WS00322 051133

GRAVITATIONAL WAVE MERGER DETECTIONS

We are taking data!

https://gracedb.ligo.org/superevents/public/O4/#

The **future**: "big data" & distant Universe

[Chen, **Ezquiaga** & Gupta (CQG'24)] 11

LISA's perspective

For more details see: ezquiaga.github.io/lectures/Lecture_Notes_BHs_GWs.pdf

Gravitational lensing

• Solve GW propagation on a curved background

$$\Box \bar{h}_{\mu\nu} + 2\bar{R}_{\alpha\mu\beta\nu}\bar{h}^{\alpha\beta} = 0$$

• We want to make a mapping between the source and the observer through the lens

Gravitational lensing

• In *weak-gravity* and *thin lens* approximation, solve in *Fourier* space:

$$h_L(\omega) = F(\omega, \theta_S) \cdot h(\omega)$$

$$F(\boldsymbol{w}, \vec{y}) = \frac{\boldsymbol{w}}{2\pi i} \int d^2 \boldsymbol{x} \, \exp[i\boldsymbol{w}T_d(\vec{x}, \vec{y})]$$

Multiple chirps

$$\Delta t_d \cdot \omega \gg 1$$

$$h_L(\omega) = F(\omega, \theta_S) \cdot h(\omega)$$
$$F \approx \sum_j |\mu_j|^{1/2} \exp\left(i\omega t_j - i\pi n_j\right)$$

Magnification Time delay Phase shift

• Lensed signals acquire a different phase shift

$$n_j = 0, 1/2, 1$$

type I
type III
[source] [image]

Gravitational lensing gravitational wave spectrum

Repeated chirps due to strong lensing

Waveform *distortions* by substructures

Source

Lens

Detector

Gravitational wave lensing: expanding *horizons*

Gravitational wave lensing:

expanding horizons to detect new populations

E.g. two (toy) populations of black holes

"field": ~100,000 /yr; 100 lensed/yr; "pop-III": ~35,000 /yr; 150 lensed/yr [O5] 1500 det./yr, 5 lens det./yr

[O5] 0 det./yr, 1 lens. det./yr

Gravitational wave lensing: probing *dark matter* structures

 $\lambda_{\rm gw} \sim 10^3 {\rm km} \left(\frac{M_{\rm bbh}}{10 M_{\odot}} \right)$

Gravitational wave lensing: probing *dark matter* structures *E.g.* compact (point) lenses: *PBHs*, *IMBHs*

$$\Delta t_d(y=1) \simeq 4 \left(\frac{(1+z_L)M_L}{100M_{\odot}} \right)$$
ms

Gravitational wave lensing: probing *dark matter* structures *E.g.* subhalos are comparable to *supermassive* binary black hole coalescences. *LISA* signals could distorted by lensing!

Gravitational wave lensing:

Highly magnified, overlapping signals near caustics *E.g.* interference and diffraction near fold caustic

Lensing searches: GWTC-3

- No evidence of *repeated chirps* in the data
- No evidence of distorted lensed waveforms in the data

[LVK lensing GWTC-2] [LVK lensing GWTC-3]₂₃

*(O)*VIRG

KA(

Lensing searches: GWTC-3

• Upper bound on binary black hole merger rate

[LVK lensing GWTC-2] [LVK lensing GWTC-3]₂

(IO))VIRG.

KAGRA

Merger rate of binary black holes

Searching for lensed GWs

Distorted waveforms could be *missed* by current searches! Juno Chan (NBI)

Substructures - clusters

[<u>Vujeva</u>, **Ezquiaga**, Lo, Chan; 2025] **26**

Multi-messenger lensing

- Cross match GWs with lens catalogs
- Identify host galaxy (*sky localization!*)
- Watchlist for efficient lenses

Conclusions

Gravitational waves are precious cosmological probes:

- Well understood signals from general relativity
- Travel unaltered except for gravitational lensing
- Probing origin of the observed black holes and dark matter substructures via lensing
- Future of gravitational wave astronomy is exciting!

Looking forward for your questions!

Medfinansieret af Den Europæiske Unions Connecting Europe-facilitet

Join us!

VILLUM FONDEN

ezquiaga.github.io/joinus

