The ENUBET Demonstrator: beamtest characterization across the years

Giosuè Saibene PhD student at Università degli Studi dell'Insubria - DiSAT Associate to INFN - sezione di Milano Bicocca

Here, There & Everywhere NBIA summer school Copenhagen, 08/07/2025 on behalf of the nuSCOPE Collaboration

The systematic problems

The **main goals** of the current and future neutrino oscillation experiments are:

- the measurement of δ_{CP} in the CKM matrix
- the neutrino mass ordering
- a better determination of the oscillation parameters

But several uncertainties are involved:

- the neutrino flux
- the interaction cross section
- the detector efficiency

Process of interest: Charged Current (CC) interaction with nuclei \rightarrow Perform an accurate measurement of the CC cross-section in the GeV range

The ENUBET project (ERC-Consolidator Grant 2015)

 $\textbf{ENUBET} \rightarrow \textbf{Enhanced NeUtrino BEams from kaon Tagging}$

Provide a high-quality neutrino beam that will allow the measurement of the CC cross-section for v_e (and possibly v_{μ}) with a **1% precision** [1] [2] [3] [4]

Detect the large-angle leptons generated in the decay

The ENUBET Demonstrator

Largest prototype of the ENUBET collaboration

- 2022 version \rightarrow **400 channels** readout by 400 SiPMs
- 2023 version \rightarrow **1200 channels** readout by 1200 SiPMs

📥 🔊 💥

The ENUBET detector: particle discrimination

Study of the energy deposit and event topology of the decay: $~K_{e3}^+ o e^+ \, \pi^0 \,
u_e$

 μ^{\pm} (signal/background) topology

- Scintillating tiles
- Hit tiles \rightarrow energy deposited by particles
- Hit t_0 tiles \rightarrow photon veto tiles

Decay		BR (%)	Comment
$ \begin{array}{c} \pi^+ \rightarrow \mu^+ \nu_\mu \\ K^+ \rightarrow \mu^+ \nu_\mu \\ K^+ \rightarrow \pi^+ \pi^+ \pi^- \\ K^+ \rightarrow e^+ \pi^0 \nu_e \\ K^+ \rightarrow \mu^+ \pi^0 \nu_\mu \\ K^+ \rightarrow \pi^+ \pi^0 \pi^0 \end{array} $	called K_{e3}^+ called $K_{\mu3}^+$	$\begin{array}{c} \sim 100 \\ 63.56(11) \\ 5.58(2) \\ 5.07(4) \\ 3.35(3) \\ 1.76(2) \end{array}$	Hadron dump Background Background Signal Signal Background

The ENUBET beamtests @ CERN PS

In 2022, 2023 and 2024, beamtests have been done at the CERN PS T9 extracted beamline

Equalization of the channels

Every SiPM, which performs the readout of one channel, could have a different response, so an equalization procedure of the 1200 SiPMs is needed:

- Estimate the COG with the efficiency map of each tile
- Select MIP particles impinging in the fiducial cut area
- Fit the MIP peak and equalize the channels:

$$PH_{equ} = \underbrace{\begin{array}{c} PH - baseline \\ peak - baseline \end{array}}_{peak - baseline}$$

Calibration and energy resolution

 \rightarrow Linearity and energy resolution values compatible with the ones from previous prototypes 7

Crosstalk analysis

- Crosstalk studied only for the first layer of the Demonstrator
- \clubsuit WLS fibers have to cross the upper tiles \rightarrow some light could be lost

 \rightarrow Crosstalk < 5% for all the tiles in the first layer through the years

Particle IDentification test

Aim: discriminate electrons from other particles

For each event, two parameters were evaluated:

- Total number of tiles over threshold - -
- Deposited energy in the Demonstrator

Predicted values:

- Events over threshold \rightarrow electrons *
- *
- Events under threshold \rightarrow **muons** and **hadrons**

 \rightarrow electrons

 \rightarrow muons

 \rightarrow hadrons

True values obtained from the Cherenkov detectors:

- * Signal in both detectors
- Only signal in the first detector *
- No signal in both detectors *

Accuracy \rightarrow fraction of events correctly classified:

- ~ 78 % in classifying electrons
- ~ 76 % in classifying muons and hadrons

Precision \rightarrow fraction of events correctly predicted:

~ 73 % in classifying electrons

~ 87 % in classifying muons and hadrons

Deposited energy [1]

We have studied the particle energy deposit with different beams impinging on the Demonstrator in horizontal position

3 GeV hadron beam

3 GeV electron beam

PRELIMINARY RESULTS

Deposited energy [2]

We have tilted the Demonstrator of 100 and 200 mrad to study the **energy deposit in the Z layers**

PRELIMINARY RESULTS

Conclusions

The preliminary results of the beamtests of the ENUBET collaboration showed:

- ✓ The basic performance of the Demonstrator
- ✓ Linearity and energy resolution values in agreement with previous smaller prototypes
- Crosstalk < 5 % for all the tiles of the first layer, which validate the outward readout scheme of the scintillating light
- Good preliminary results in PID
- ✓ Good results in the study of the energy deposition

Thanks for your attention!

References

[1] <u>ESPP 2026 Update</u>
 [2] <u>F. Terranova et al., arXiv (2025)</u>
 [3] <u>A. Longhin et al., Eur. Phys. J. C (2015)</u>
 [4] <u>G. Ballerini et al., JINST (2018)</u>

The ENUBET detector: detection principle

The ENUBET detector is a **segmented**, **inhomogeneous**, electromagnetic **calorimeter**

Plastic scintillator tiles interleaved with radiator material (Fe):

- an EM shower is produced in the iron layers
- charged products crossing the scintillator tiles cause scintillation (UV)
- scintillation light is shifted to green by WLS fibers and readout conveyed to a SiPM

SiPM = array of Single-Photon Avalanche Diodes (SPAD), readout in parallel → signal proportional to # of incoming photons!

e

Construction

SiPMs information

Calorimetric tiles readout by Hamamatsu S14160-4050HS SiPMs:

- Active area $4 \times 4 \text{ mm}^2$
- Pixel pitch: 50 µm

t_o tiles readout by Hamamatsu S14160-3050HS SiPMs:

- Active area: 3 × 3 mm²
- Pixel pitch: 50 µm

The ENUBET Demonstrator

- Largest prototype of the ENUBET collaboration
- Composed of **75** alternated arches of iron and plastic scintillators spanning 45°:
 - > 2022 version \rightarrow **400 channels** readout by 400 SiPMs
 - > 2023 version \rightarrow **1200 channels** readout by 1200 SiPMs

The experimental setup

Trackers:

- 2 single side microstrip detectors each
- Strip pitch: 242 µm
- Active area: 9.5 x 9.5 cm²
- Spatial resolution: 30 µm

Demonstrator

Efficiency map

Ratio of the number of **detected particles** over the number of **particles that hit** the tile

Calibration and energy resolution

→ Linearity and energy resolution values compatible with the ones from previous prototypes

Crosstalk analysis

For each tile (R, Φ) of the first layer, the crosstalk has been computed as the ratio between the signal in neighbouring tiles and the signal in reference tile (R₀, Φ_0):

 \rightarrow Crosstalk < 5% for all the tiles in the first layer for both the years

Accuracy and precision

- Accuracy: degree of closeness of the measured quantity to its true value, defined as: (TP + TN) / (TP + TN + FP + FN)
- Precision: how close the measurements are to each other, defined as:

TP / (TP + FP)

Where:

- TP is true positive
- TN is true negative
- FP is false positive
- FN is false negative

