Unlocking the Inelastic Dark Matter window with Vector Mediators

Ana Luisa Foguel

in collaboration with Peter Reimitz and Renata Z. Funchal

based on: <u>arxiv:2410.00881</u> J. High Energ. Phys. **2025**, 1 (2025)

afoguel@usp.br University of São Paulo, São Paulo, Brazil IFT/UAM, Madrid, Spain NBI Neutrino School 9 July 2025

Outline

- 1. Introduction and Motivations
- 2. Inelastic Dark Matter
 - \hookrightarrow Theoretical framework
 - → Decay Rates
- 3. Relic Density Computation
- 4. ReD-DeLiVeR code
- 5. Bounds
- 6. Conclusions

Introduction and Motivations where is New Physics? where is DM??? The Standard Model DM ?? Dark photon mass [eV] WIMP Mass [GeV/c2] Gravity = (Gauge)² ? 20Dill now for rec 10-10-3 pizza places: +34 68767942 $\pi = 3?$ ^{negative} neutrino +34 67524012 masses... humm \sim 5

Where can we search for BSM signals?

Where can we search for BSM signals?

Energy Frontier

Where can we search for BSM signals?

Where can we search for BSM signals?

How can we search for light particle BSM signals?

Suppose we have particles χ and $\overline{\chi}$ in the dark sector

natural possibility: couple to the gauge bosons of weak interactions

How can we search for light particle BSM signals?

Solution: inclusion of new light dark sector mediator states!

These light mediators will act as portals between the dark sector and the SM.

Introduction and Motivations · Hidden Portals

How can we search for light particle BSM signals?

Introduction and Motivations · Hidden Portals

How can we search for light particle BSM signals?

Theoretical Framework

The interaction term with the mediator turns to be off-diagonal

$$\mathcal{L} \supset g_D Z_{Q\mu} (\psi_1^{\dagger} \bar{\sigma}^{\mu} \psi_1 - \psi_2^{\dagger} \bar{\sigma}^{\mu} \psi_2) \longrightarrow$$

$$\mathcal{L}_{\mathrm{int}}^{\mathrm{D}} = rac{i}{2} g_D Z_{Q\mu} \bar{\chi_2} \gamma^{\mu} \chi_1 + \mathrm{h.c.}$$

Theoretical Framework

The interaction term with the mediator turns to be off-diagonal

$$\mathcal{L} \supset g_D Z_{Q\mu} (\psi_1^{\dagger} \bar{\sigma}^{\mu} \psi_1 - \psi_2^{\dagger} \bar{\sigma}^{\mu} \psi_2) \longrightarrow \mathcal{L}_{int}^{D} = \frac{i}{2} g_D Z_{Q\mu} \bar{\chi}_2 \gamma^{\mu} \chi_1 + h.c$$

Motivations

Thermal relics: DM abundance can be computed via thermal freeze-out.

 $\overline{\chi}_1$

 χ_2

 Z_Q

 g_D

Theoretical Framework

The interaction term with the mediator turns to be off-diagonal

$$\mathcal{L} \supset g_D Z_{Q\mu}(\psi_1^{\dagger} \bar{\sigma}^{\mu} \psi_1 - \psi_2^{\dagger} \bar{\sigma}^{\mu} \psi_2) \longrightarrow \mathcal{L}_{int}^{D} = \frac{i}{2} g_D Z_{Q\mu} \bar{\chi_2} \gamma^{\mu} \chi_1 + h.c$$

Motivations

Solution Thermal relics: DM abundance can be computed via thermal freeze-out.

Several section experimental limits

The heavier state χ_2 can decay into the DM candidate χ_1 , depleting its abundance

- \Rightarrow no present-day population of heavier states to co-annihilate with the DM \rightarrow avoid indirect detection signals
- ⇒ similarly, direct detection signals depend on up-scatter of the light state, which is kinematically suppressed

X1

X2

Theoretical Framework

The interaction term with the mediator turns to be off-diagonal

$$\mathcal{L} \supset g_D Z_{Q\mu}(\psi_1^{\dagger} \bar{\sigma}^{\mu} \psi_1 - \psi_2^{\dagger} \bar{\sigma}^{\mu} \psi_2) \longrightarrow \mathcal{L}_{int}^{D} = \frac{i}{2} g_D Z_{Q\mu} \bar{\chi_2} \gamma^{\mu} \chi_1 + h.c$$

Motivations

Solution Thermal relics: DM abundance can be computed via thermal freeze-out.

Several section experimental limits

The heavier state χ_2 can decay into the DM candidate χ_1 , depleting its abundance

- \Rightarrow no present-day population of heavier states to co-annihilate with the DM \rightarrow avoid indirect detection signals
- ⇒ similarly, direct detection signals depend on up-scatter of the light state, which is kinematically suppressed

Evades stringent CMB limits

Since the abundance of χ_2 is already reduced during recombination era, coannihilations that would inject energy into the plasma are suppressed.

X 2

Theoretical Framework

The interaction term with the mediator turns to be off-diagonal

$$\mathcal{L} \supset g_D Z_{Q\mu} (\psi_1^{\dagger} \bar{\sigma}^{\mu} \psi_1 - \psi_2^{\dagger} \bar{\sigma}^{\mu} \psi_2) \longrightarrow \mathcal{L}_{int}^{D} = \frac{i}{2} g_D Z_{Q\mu} \bar{\chi_2} \gamma^{\mu} \chi_1 + h.c$$

What's new?

• In the literature: only considered the minimal scenario with a secluded dark photon portal Z_D However... this case has been nearly completely ruled out by experimental limits...

 $\overline{\chi}_1$

 χ_2

 Z_Q

 g_D

Theoretical Framework

The interaction term with the mediator turns to be off-diagonal

$$\mathcal{L} \supset g_D Z_{Q\mu} (\psi_1^{\dagger} \bar{\sigma}^{\mu} \psi_1 - \psi_2^{\dagger} \bar{\sigma}^{\mu} \psi_2) \longrightarrow$$

What's new?

• This work: we consider the case of generic charges for the $U(1)_Q$ group

$$Q = x_B B - x_e L_e - x_\mu L_\mu - x_\tau L_\tau$$

 $\mathcal{L}_{\mathrm{int}}^{\mathrm{D}} = rac{i}{2} g_D Z_{Q\mu} \bar{\chi_2} \gamma^{\mu} \chi_1 + \mathrm{h.c.}$

vector mediator also couples to the SM via direct terms depending on the choice of charge

$$\begin{pmatrix} \mathcal{L}_{\text{int}}^{\text{SM}} = e\epsilon J_{\text{em}}^{\mu} Z_{Q\mu} - g_{Q} J_{Q}^{\mu} Z_{Q\mu} \\ J_{Q}^{\mu} = \sum_{f} q_{Q}^{f} \bar{f} \gamma^{\mu} f + \sum_{\ell=e,\mu,\tau} q_{Q}^{\nu_{\ell}} \bar{\nu}_{\ell} \gamma^{\mu} P_{L} \nu_{\ell}, \end{cases}$$

x_B	x_e	x_{μ}	$x_{ au}$	Q	q_Q^f			
					quarks	e/ u_e	μ/ u_{μ}	$\tau/ u_{ au}$
1	1	1	1	B-L	$\frac{1}{3}$	-1	-1	-1
1	0	0	3	$B - 3L_{\tau}$	$\frac{1}{3}$	0	0	-3
1	0	0	0	В	$\frac{1}{3}$	0	0	0
0	0	-1	1	$L_{\mu} - L_{\tau}$	0	0	1	-1

Theoretical Framework

The interaction term with the mediator turns to be off-diagonal

$$\mathcal{L} \supset g_D Z_{Q\mu} (\psi_1^{\dagger} \bar{\sigma}^{\mu} \psi_1 - \psi_2^{\dagger} \bar{\sigma}^{\mu} \psi_2) \longrightarrow$$

What's new?

• This work: we consider the case of generic charges for the $U(1)_Q$ group

ALF, P. Reimitz, R.Z. Funchal arXiv:2410.00881 [hep-ph]

> iDM_Q models

$$\mathcal{L}_{\rm int}^{\rm SM} = e\epsilon J_{\rm em}^{\mu} Z_{Q\mu} - \frac{g_Q}{g_Q} J_Q^{\mu} Z_{Q\mu}$$

$$J^{\mu}_Q = \sum_f q^f_Q \, \bar{f} \gamma^{\mu} \, f \, + \sum_{\ell=e,\mu,\tau} q^{\nu_{\ell}}_Q \, \bar{\nu}_{\ell} \gamma^{\mu} P_L \nu_{\ell},$$

free parameters:
$$m_{Z_Q},\,R,\,\Delta,\,g_Q,\,lpha_L$$

 χ_1

 χ_2

 $\mathcal{L}_{\mathrm{int}}^{\mathrm{D}} = rac{i}{2} g_D Z_{Q\mu} \bar{\chi_2} \gamma^{\mu} \chi_1 + \mathrm{h.c.}$

Inelastic Dark Matter · Relic Density Computation

Boltzmann Equation

$$\begin{aligned} \frac{\mathrm{d}Y_{1,2}}{\mathrm{d}x} &= \frac{s}{Hx} \left[-\left\langle \sigma v \right\rangle_{12 \to ff} \left(Y_1 Y_2 - Y_1^{\mathrm{eq}} Y_2^{\mathrm{eq}} \right) \pm 2 \left\langle \sigma v \right\rangle_{22 \to 11} \left((Y_2)^2 - \left(Y_1 \frac{Y_2^{\mathrm{eq}}}{Y_1^{\mathrm{eq}}} \right)^2 \right) \right. \\ & \left. \pm \left(\left\langle \sigma v \right\rangle_{2f \to 1f} Y_f^{\mathrm{eq}} + \frac{1}{s} \left\langle \Gamma \right\rangle_{2 \to 1ff} \right) \left(Y_2 - Y_1 \frac{Y_2^{\mathrm{eq}}}{Y_1^{\mathrm{eq}}} \right) \right], \end{aligned}$$

Inelastic Dark Matter · Relic Density Computation **Boltzmann Equation** $\pm 2 \left\langle \sigma v \right\rangle_{22 \to 11} \left((Y_2)^2 - \left(Y_1 \frac{Y_2^{\text{eq}}}{Y_1^{\text{eq}}} \right)^2 \right)$ $dY_{1,2}$ s1 + + + + + т зеат зеа) Z_{O} χ_2 $\left(Y_2 - Y_1 \frac{Y_2^{\mathrm{eq}}}{Y_1^{\mathrm{eq}}}\right) \bigg|,$ Z_O b)

 χ_2

Inelastic Dark Matter · Relic Density Computation **Boltzmann Equation** $\pm 2 \left\langle \sigma v \right\rangle_{22 \to 11} \left((Y_2)^2 - \left(Y_1 \frac{Y_2^{\text{eq}}}{Y_1^{\text{eq}}} \right)^2 \right)$ $dY_{1,2}$ s1 ----т zeaт zea / Z_{O} $\left(Y_2 - Y_1 \frac{Y_2^{\mathrm{eq}}}{Y_1^{\mathrm{eq}}}\right) \bigg|,$ χ_2 Z_O b) f χ_2 χ_1 Z_Q Z_{O} g_D a) D) a) $\chi_1 \chi_2 \to SM SM$ b) $\chi_2 \chi_2 \rightarrow \chi_1 \chi_1$

ReD-DeLiVeR (Relic Density with DeLiVeR)

 \rightarrow update of the previous python package DELIVER (Decays of Light Vectors Revised), which can be used to compute decay rates and branching ratios for user-defined U(1)_Q charges,

key feature: includes a complete set of hadronic decays (20 channels)

		channel	resonances	ALF, P. Reimitz, R.Z. Funchal [JHEP 04 (2022)119]
		$\eta\gamma$	$ ho, ho',\omega,\phi$	
		$\eta\pi\pi$	ho, ho', ho''	
channel	resonances	$\omega\pi \to \pi\pi\gamma$	ho, ho', ho''	
$\pi\gamma$	$oldsymbol{ ho}, \omega, oldsymbol{\omega}', oldsymbol{\omega}'', oldsymbol{\phi}$	$\omega\pi\pi$	ω''	
$\pi\pi$	ho, ho',	$\phi\pi$	0.0'	Z ₀ hadronic
3π	$oldsymbol{ ho},oldsymbol{ ho}'',\omega,\omega',\omega'',\phi$	$n'\pi\pi$	o'''	$V = \rho, \omega, \phi$ mode
4π	ho, ho', ho'', ho'''	17		
KK	$oldsymbol{ ho},,oldsymbol{\omega},,\phi,$	$\eta\omega$	ω',ω''	\mathcal{H}
$KK\pi$	$oldsymbol{ ho},oldsymbol{ ho}',oldsymbol{ ho}'',\phi,\phi',\phi''$	$\eta\phi$	ϕ',ϕ''	
		$par{p}/nar{n}$	$\rho, \rho', \dots, \omega, \omega', \dots$	
		$\phi\pi\pi$	ϕ', ϕ''	X
		$K^{*}(892)K\pi$	o" d'	N
		6-	ρ, φ	N N
		0π	ρ^{-1}	

ReD-DeLiVeR (Relic Density with DeLiVeR)

- \rightarrow update of the previous python package DELIVER (Decays of Light Vectors Revised), which can be used to compute decay rates and branching ratios for user-defined U(1)_Q charges,
- key feature: includes a complete set of hadronic decays (20 channels)
 - > new version:
 - inclusion of DM candidates
- simplified DM models inelastic DM
- computation of relic density and rates

ReD-DeLiVeR (Relic Density with DeLiVeR)

- \rightarrow update of the previous python package DELIVER (Decays of Light Vectors Revised), which can be used to compute decay rates and branching ratios for user-defined U(1)_Q charges,
- >> key feature: includes a complete set of hadronic decays (20 channels)
 - > new version:
 - inclusion of DM candidates

simplified DM models inelastic DM

• computation of relic density and rates

ReD-DeLiVeR (Relic Density with DeLiVeR)

 \rightarrow update of the previous python package DELIVER (Decays of Light Vectors Revised), which can be used to compute decay rates and branching ratios for user-defined U(1)_Q charges,

key feature: includes a complete set of hadronic decays (20 channels)

> new version:

inclusion of DM candidates

simplified DM models inelastic DM

- computation of relic density and rates
- computation of thermal targets

specially for B-coupled models, it is very important to compute correctly the hadronic contributions

ReD-DeLiVeR (Relic Density with DeLiVeR)

 \rightarrow update of the previous python package DELIVER (Decays of Light Vectors Revised), which can be used to compute decay rates and branching ratios for user-defined U(1)₀ charges,

>> key feature: includes a complete set of hadronic decays (20 channels)

B model + Majorana DM new version: 10^{-1} ReD-DeLiVeR simplified DM models Batell et al. inclusion of DM candidates [arXiv:2111.10343] inelastic DM 10⁻² computation of relic density and rates gq computation of thermal targets 10-3 R = 3publicly available on GitHub together with a **Tutorial**! $\alpha_{D} = 0.50$ $\Omega h^2 = 0.12$ https://github.com/anafoguel/ReD-DeLiVeR 10^{-4} 10^{-1} 10^{0} 10^{-2} 10^{1} **ReD-DeLiVeR** m_{Z_0} [GeV]

specially for B-coupled models, it is very important to compute correctly the hadronic contributions

by Ana Luisa Foguel, Peter Reimitz, and Renata Zukanovich Funchal

arXiv 2410.00881

 \rightarrow iDM_{B-L}

 $\rightarrow \mathrm{iDM}_{B-3L_{\tau}}$

 $\rightarrow \mathrm{iDM}_{B-3L_{\tau}}$

 $\mathrm{iDM}_{L_{\mu}-L_{\tau}}$

Conclusions

- Light Feebly Interacting Particles can shed light in several unanswered questions of the SM
- As experiments increase their luminosities, and we enter the intensity frontier era of particle physics, we increase the capabilities to probe new light sectors.
- As a guiding principle, we consider different portals between the Dark Sector and the SM

$$> B - 3L_{\tau} > L_{\mu} - L_{\tau}$$

Conclusions

- Light Feebly Interacting Particles can shed light in several unanswered questions of the SM
- As experiments increase their luminosities, and we enter the intensity frontier era of particle physics, we increase the capabilities to probe new light sectors.
- As a guiding principle, we consider different portals between the Dark Sector and the SM
- general vector mediators In this work we considered a **vector portal** to a fermionic **inelastic Dark Matter** sector ٠ iDM_o thermal relics evade CMB evade indirect and bounds direct detection Thank you for your kind attention! We developed a code that computes the relic density **ReD-DeLiVeR** With general mediators, we showed that we can unlock new ٠ regions of the parameter space of the vanilla dark photon model $> B - 3L_{\tau} > L_{\mu} - L_{\tau}$

Thank you for your attention!!

BACKUP

DM Thermal Freeze-out · WIMP miracle

We know that freeze-out happens when $~~\Gamma \sim H$

WIMP miracle

For couplings similar to the electroweak coupling $(lpha_{
m eff} \sim 10^{-2})\,$ =

However, this also implies that

$$m_{\rm DM} \gtrsim \frac{m_Z^2}{(T_{\rm eq} \, m_{\rm Pl})^{1/2}} \sim {\rm GeV}.$$

 $m_{\chi} \sim \alpha_{\rm eff} \sqrt{T_{\rm eq} M_{\rm Pl}} \sim \alpha_{\rm eff} \times \chi^{\chi_2}$

Hence, sub-GeV DM motivates the presence of new light mediators

 Z_{O}

 χ_2

 χ_2

 g_Q

Inelastic Dark Matter · Decay Rates

Decay rates · Mediator

55

 $\overline{\chi}_1$

 g_D

 \sim) $\Lambda^2 \Lambda^2$ ' $\Lambda^1 \Lambda^1$

Inelastic Dark Matter · Decay Rates

Decay rates \cdot Dark fermion χ_2

Inelastic Dark Matter · Relic Density Computation **Boltzmann Equation** $\underbrace{\sum_{\chi_1}}_{\chi_1} \geq 2 \langle \sigma v \rangle_{22 \to 11} \left((Y_2)^2 - \left(Y_1 \frac{Y_2^{\text{eq}}}{Y_1^{\text{eq}}} \right)^2 \right)$ $dY_{1,2}$ s1 -----١. Z_O χ_2 $\left(Y_2 - Y_1 \frac{Y_2^{\text{eq}}}{Y_1^{\text{eq}}}\right)$, b) coannihilations we can simplify by considering $n = n_1 + n_2$ dominate! χ_2 χ_1 χ_2 $= -2\frac{s}{xH} \langle \sigma v \rangle_{\text{eff}} \left(Y^2 - Y_{\text{eq}}^2 \right)$ $\langle \sigma v \rangle_{\text{eff}} = \langle \sigma v \rangle_{12 \to ff} \frac{n_1^{\text{eq}} n_2^{\text{eq}}}{(n^{\text{eq}})^2}$ d) c) b) $\checkmark \chi_1$ a) a) $\chi_1 \chi_2 \to SM$ b) $\chi_2 \chi_2 \rightarrow \chi_1 \chi_1$ g_D χ_2 χ_2

Simulation Checks

Different thermal targets

Fixed Dark Charges

$$\mathcal{L}_{\text{int}}^{\text{D}} = i g_D Z_{Q\mu} \bar{\chi_2} \gamma^{\mu} \chi_1 + \text{h.c.} \qquad g_D \equiv g_Q q_D$$

Details on the Experimental Limits

Invisible searches

BaBar, Belle II, LDMX, NA62 and NA64-e

 $\frac{\sigma_{Z_Q}}{\sigma_{Z_{\gamma}}} \{ BR(Z_Q \to \chi_1 \chi_2) [BR(\chi_2 \to \chi_1 \bar{\nu} \nu) + P_{out}^{\chi_2} BR(\chi_2 \to \chi_1 + vis)] + BR(Z_Q \to \bar{\nu} \nu) \} - 1 = 0$

$$\mathrm{P}_{\mathrm{out}}^{\chi_2} = \mathrm{e}^{-\mathrm{L}_{\mathrm{out}}/\lambda_{\chi_2}}$$

recast from invisible Dark photon limits

• Semi-visible searches

E137, CHARM, NuCal and LSND

$$\frac{\sigma_{Z_Q}}{\sigma_{Z_{\gamma}}} \left(\frac{\mathrm{BR}(\mathrm{Z}_{\mathrm{Q}} \to \chi_1 \chi_2)}{\mathrm{BR}(\mathrm{Z}_{\gamma} \to \chi_1 \chi_2)} \right) \left(\frac{\mathrm{BR}(\chi_2 \to \mathrm{Z}_{\mathrm{Q}}^* \to \chi_1 \mathrm{e}^+ \mathrm{e}^-)}{\mathrm{BR}(\chi_2 \to \mathrm{Z}_{\gamma}^* \to \chi_1 \mathrm{e}^+ \mathrm{e}^-)} \right) \left(\frac{\varepsilon_Q(\tau_{\chi_2})}{\varepsilon_{\gamma}(\tau_{\chi_2})} \right) - 1 = 0$$

recast from the original iDM limits

Details on the Experimental Limits

- 4µ searches from BaBar and CMS
 - \bigcirc constrained $L_{\mu} L_{\tau}$ mediators.

$$\frac{g_Q}{g_{L_{\mu}-L_{\tau}}^{\exp}} \left[\frac{\text{BR}(\text{Z}_{\text{Q}} \to \mu^+ \mu^-) + \text{BR}(\text{Z}_{\text{Q}} \to \chi_1 \chi_2) \text{BR}(\chi_2 \to \chi_1 \mu^+ \mu^-) \text{P}_{\text{in}}^{\chi_2}}{\text{BR}(\text{Z}_{\text{L}_{\mu}-\text{L}_{\tau}} \to \mu^+ \mu^-)} \right] - 1 = 0$$
$$P_{\text{in}}^{\chi_2} = e^{-\text{L}_{\text{in}}/\lambda_{\chi_2}} - e^{-\text{L}_{\text{out}}/\lambda_{\chi_2}}$$

• Meson decays

 J/Ψ and Υ invisible decay searches

$$\begin{aligned} \frac{\mathrm{BR}(J/\Psi \to \chi_1 \chi_2)}{\mathrm{BR}(J/\Psi \to e^+ e^-)} &= \frac{\alpha_D}{\alpha_e} \left(\frac{q_Q^c g_Q}{q_{\mathrm{em}}^c e} \right)^2 \frac{m_V^4}{(m_{Z_Q}^2 - m_V^2)^2 + m_{Z_Q}^2 \Gamma_{Z_Q}^2} \\ & \times \left(1 - \frac{\Delta^2}{R^2} m_r^2 \right)^{3/2} \left(1 + \frac{m_r^2 (\Delta + 2)^2}{2R^2} \right) \sqrt{1 - \frac{m_r^2 (\Delta + 2)^2}{R^2}} \end{aligned}$$

 $\begin{aligned} &\operatorname{BR}(V \to \operatorname{inv})|_{\mathrm{iDM}_{Q}} = \operatorname{BR}(V \to \chi_{1}\chi_{2}) \left[\operatorname{BR}(\chi_{2} \to \chi_{1}\bar{\nu}\nu) + \operatorname{P}_{\mathrm{out}}^{\chi_{2}} \operatorname{BR}(\chi_{2} \to \chi_{1} + \operatorname{vis})\right] \\ &+ \operatorname{BR}(V \to Z_{Q}^{*} \to \bar{\nu}\nu) \,. \end{aligned} \Rightarrow \begin{aligned} &\operatorname{BR}(V \to \operatorname{inv})|_{\mathrm{iDM}_{Q}} < \operatorname{BR}(V \to \operatorname{inv})|_{\mathrm{exp}} \\ & \to \end{aligned}$