u_{τ} STUDIES USING KM3NET/ORCA

Sharif El Mentawi

elmentawi@cppm.in2p3.fr CPPM

July 8, 2025

KM3NET/ORCA

- KM3NeT is a second generation neutrino telescope in the mediterranean sea
- It is planned to consist of 115 cable strings or "Detection Units" (DUs), with a set of 18 photosensors or "Digital Optical Modules" (DOMs)
- Since the start of construction in 2017, 28 DUs have been deployed in multiple stages
- Thus, the underwater infrastructure is designed to allow for data-taking even before the detector reaches its full instrumented mass of 7 Mtons
- Here, we will mostly talk about 510 days of data taken with the first detector layout using 6 DUs (ORCA6: 433 kton-years)

ORCA DATA

- ORCA measures different kinds of event topologies:
- Particle Tracks: particle moves through the detector without interacting (mostly muons)
 - Particle Showers: particle interacts within the detector creating a cascade of secondary particles

DATA FILTERING

- Background:
 - Radioactive K^{40} Isotopes
 - Bioluminescence
 - Atmospheric muons

• Tracks vs. Showers

ORCA6 DATA

- The atmospheric muons can be very well rejected
- The $u_{ au,CC}$ set is dominated by showers
- Still the sample of $\nu_{\tau,CC}$ is subdominant within the sample, so the number of $\nu_{\tau,CC}$ has to be computed with statistical arguments, not event by event
- The size of the $u_{ au,CC}$ sample is as big as the 14 year sample by Super-Kamiokande

Event Type	Showers	High Purity Tracks	Low Purity Tracks	Total
$\nu_{e,CC}$ + $\bar{\nu}_{e,CC}$	603	51	85	739
$\overline{\nu_{\mu,CC}}$ + $\overline{ u}_{\mu,CC}$	902	1777	1786	4465
$ u_{ au,CC} + ar{ u}_{ au,CC} $	143	22	20	185
$ u_{NC}$ + $\bar{ u}_{NC}$	289	13	22	324
atm. μ + $\bar{\mu}$	22	7	89	118
Total MC	1959	1870	2002	5831
Total Data	1958	1868	2002	5828

ν_τ charged current cross section

- In order to be detectable in KM3NeT, a ν_τ needs enough energy to produce a τ
- This leads to a kinematic cut off energy of $E=m_{ au}\left(1+rac{m_{ au}}{2m_N}
 ight)=3.5\,{
 m GeV}$
- This makes cross section measurement particularly interesting as those cut offs are particularly sensitive to Beyond the Standard Model effects
- Also, current cross-section measurements for $\nu_{\tau,CC}$ have big errors

ν_τ charged current cross section

- The u_{τ} Charged Current (CC) crosssection $\sigma_{\tau}^{meas}(E_{\nu})$ can be computed using $\sigma_{\tau}^{meas}(E_{\nu}) = S_{\tau} \times \sigma_{\tau}^{theo}(E_{\nu})$
 - $S_{ au} \hat{=}$ normalisation
 - $\sigma_{\tau}^{theo} =$ theoretical cross section
- S_{τ} can be fitted via a maximum-likelihood fit
- Here, we fit Δm_{31} , $heta_{23}$, $S_{ au}$ and systematics

• This leads to a $\sigma_{\tau}^{meas}(20.3\,GeV) = 2.5^{+2.6}_{-1.8} \times 10^{-38}\,cm^2$, where $E_{\nu} = 20.3\,GeV$ is the median true energy in the MC dataset and the errors are obtained using the Feldmann-Cousins method

ν_τ charged current cross section

- To get an energy independent comparison, compare $S_{ au}=0.48^{+0.49}_{-0.33}$ with other experiments:
 - OPERA, 2015
 - Super-Kamiokande, 2018
 - IceCube, 2019
- ORCA with only 433 kton-years worth of data is already very competitive

OUTLOOK

- Currently, there is 2.79 Mton-years of data available (left plot)
- The full sized detector (115 DUs) would take about 5.5 months to obtain this data
- Using this data would already shrink the errors on the $u_{ au}$ normalisation to below 20%
- With the growing detector, we will very fast produce one of the biggest ν_{τ} samples on the planet

SUMMARY

- We used the ORCA6 (433 kton-years) detector to obtain competitive results for the $u_{ au}$ normalisation $S_{ au}=0.48^{+0.49}_{-0.33}$
- The results of this analysis and more can be seen in more detail in the most recent KM3NeT publication (arXiv:2502.01443) which was recently accepted by JHEP
- Note, that this analysis only uses 5% of the final detector volume. Using the following detector layouts, the errorbars will shrink by a factor 5 or even more
- With the next analyses we might be able to produce energy dependent measurements of the ν_{τ} CC cross-section

Thank you all for listening!

SYSTEMATICS ON THE $u_{ au}$ Normalisation

