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Neutrinos in core-collapse supernovae
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Neutrinos in core-collapse supernovae

* Neutrinos are abundantly produced during a
core-collapse supernova

® They drive the explosion dynamics and shape
nucleosynthesis

® Fast neutrino flavor conversions become
dominant in the extremely dense core
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But they require special conditions!




Conditions for fast neutrino flavor conversions

®* Neutrinos decouple at different radii depending on v
flavor and energy

Neutrinos trapped Z Z

Tamborra & Shalgar, Ann. Rev. Nucl. Part. Sci. 71 (2021) 165-188



Conditions for fast neutrino flavor conversions

* Neutrinos decouple at ditferent radii depending on
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®* ELN crossings trigger fast flavor conversions
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Conditions for fast neutrino flavor conversions
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®* ELN crossings trigger fast flavor conversions

— Knowing the angular distributions is essential to probe

the regions where neutrino flavor conversions occur!

Propagation angle

Cornelius, Shalgar & Tamborra, JCAP 02 (2024) 038



Supernova models

® Most supernova simulations have no angular information
(too computationally expensive)

* They evolve only angular moments:



Supernova models

® Most supernova simulations have no angular information
(too computationally expensive)

* They evolve only angular moments:

— So how do we obtain angular distributions?



Boltzmann equation of neutrino transport

, Collisions between
Advection .
neutrinos and matter
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Boltzmann equation of neutrino transport

, Collisions between
Advection .
neutrinos and matter

Sula a \

P L —
(815 - c V) P = C[’O ) P ] Information from SN simulations

l rmax

Density matrix, p(r, u, E£)

v, v, U, U,)

® Simulation domain: spherical shell enclosing the neutrinosphere

® Boltzmann equation evolved in time until a steady state is reached




Supernova models

Hydrodynamical profiles from SN simulations at chosen post-bounce times
(density, temperature, mass fractions, chem. potentials)

We compare three 1D core-collapse supernova models:

Do muons and convection
affect the formation of
ELN crossings?

Model 1: without muons and convection
Model 2: without muons, with convection

Model 3: with convection and muons

The Garching Core-Collapse Supernova Archive



https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/archive.html

ELN angular distributions

, Forward-peaked distributions
Boltzmann solution

Model 1 (w/o muons and w/o convection)

Model 2 (w/o muons and /w/ convection)
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ELN distribution, G(r, u) = JdE Dee(rs s E) = Poo(r, i, E)|

Cornelius, Tamborra, Heinlein, Janka, arXiv:2506.20723



Alternative method:
Use provided moments to reconstruct angular distributions

Maximum entropy distribution
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Cornelius, Tamborra, Heinlein, Janka, arXiv:2506.20723



Reconstructing ELN angular distributions

Maximum entropy

Model 1 (w/o muons and w/o convection) Model 2 (w/o muons and w/ convection)
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* Crossings reproduced, but distributions less forward peaked

Cornelius, Tamborra, Heinlein, Janka, arXiv:2506.20723



Reconstructing ELN angular distributions

Using moments and the Minerbo closure:
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, , 2nd moment MD2 calculated from closure

Cornelius, Tamborra, Heinlein, Janka, arXiv:2506.20723



Reconstructing ELN angular distributions

Model 1 (w/o muons and w/o convection) Model 2 (w/o muons and w/ convection)
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* Double crossings, distributions have wrong shape

Cornelius, Tamborra, Heinlein, Janka, arXiv:2506.20723



How well does each method perform?

(Forward crossings only)

® Boltzmann: crossings occur after neutrino

decoupling and also above the shock

* Maximum entropy: reproduces most
CrossIngs

* : detects no crossings

. Shock
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Cornelius, Tamborra, Heinlein, Janka, arXiv:2506.20723



How well does each method perform?

(Forward crossings only)

Shock
® Boltzmann: crossings occur after neutrino fpp = 0105 Boltzmann
decoupling for Model 1 — convection causes N
' |
them to disappear! Max entropy
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Cornelius, Tamborra, Heinlein, Janka, arXiv:2506.20723



How well does each method perform?

(Forward crossings only)

® Boltzmann: crossings after neutrino decoupling
* Maximum entropy: reproduces most crossings

° : crossings for only Model 2

tpp = 1.00 s Boltzmann
Max entropy
—— Model 1 (—m—c)
=== Model 2 (—m-+-c)
------ Model 3 (+m+c)
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Cornelius, Tamborra, Heinlein, Janka, arXiv:2506.20723



Conclusions

* Fast neutrino flavor conversions can crucially impact the SN evolution

® They can develop when ELN crossings exist = we need angular information, or to

reconstruct it in some way



Conclusions

* Fast neutrino flavor conversions can crucially impact the SN evolution

® They can develop when ELN crossings exist = we need angular information, or to

reconstruct it in some way

* Boltzmann: convection removes crossings at z,;, = 0.1 s, muons play no role

* Maximum entropy outperforms method but it fails or misidentifies

Crossings in some cases



Conclusions

* Fast neutrino flavor conversions can crucially impact the SN evolution

® They can develop when ELN crossings exist = we need angular information, or to

reconstruct it in some way

* Boltzmann: convection removes crossings at z,;, = 0.1 s, muons play no role

®* Maximum entropy outperforms method but it fails or misidentifies

Crossings 1n some cases

® Method accuracy depends on post-bounce time but is independent of muons and

convection — overall, none of the moment-based methods are trustworthy
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Boltzmann equation of neutrino transport

Neutrinos ( - C - 6) 0 Clp, p|

Antineutrinos ( - C - 6) 17 Clp, p]

ot



How well does each method perform?

(F d . 1 ) Shock
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Cornelius, Tamborra, Heinlein, Janka, arXiv:2506.20723



