Radar echo signals in the RET-CR experiment NBI Neutrino Summer School Isha Loudon, on behalf of the Radar Echo Telescope collaboration

LA LIBERTÉ DE CHERCHER

European Research Council Established by the European Commission

Radar Echo Technique

Using **in-ice radar** to detect neutrino-induced cascades

- Incoming neutrino interacts in ice, produces particle cascade
- Leaves behind **trail of ionisation**, which can reflect incident radio

NBI Neutrino Summer School

S. Prohira et al. 2020

- Method has been demonstrated in **SLAC** laboratory experiments
- Next step: RET-CR

10/07/25

The RET-CR Experiment

Pathfinder experiment for RET-N, detecting HE Cosmic Ray (CR) air showers

- beam
- ice for independent reconstruction

NBI Neutrino Summer School

• Use secondary in-ice cascades as a test

• Detect air showers both above and below

 \Rightarrow The successful detection of in-ice CR cascades will support targeting UHE neutrinos with the radar technique

RX

The RET-CR Experiment

Exploring RET-CR signal properties

Simulating radar signals from in-ice cascades in an RET-CR setup:

- Fully understand radar signals in RET-CR
- Aid development of future reconstruction methods using the radar signal

RET-CR deployed near Summit Station, Greenland in 2023/2024 \Rightarrow data analysis ongoing!

Picture credit: S. Prohira

Position

For a fixed arrival direction = (0,0)°

NBI Neutrino Summer School

10/07/25

Position

Amplitude & Frequency

Amplitude & Frequency

Amplitude & Frequency

Summary

- RET aims to detect PeV EeV neutrinos with in-ice radar
- RET-CR experiment serving as proof-of-concept of the radar method
- Using simulations to explore properties of the radar echo signal, have found geometry-dependent features:
- Signal amplitudes controlled by phase coherence
- Signal frequency shifts linked to both **Doppler shifts and Cherenkov effects**

Picture credit: D. Frikken

NBI Neutrino Summer School

315°

225

 270°

Isha Loudon | 10/07/25

Antenna Setup

Position

Position-amplitude plots for different arrival directions

S. Prohira, K. D. de Vries, S. Toscano et al. 2021

Surface Stations:

- Radio antennas
- Particle detectors
- (+DAQ, solar panels...)

Picture Credit: Simon De Kockere

NBI Neutrino Summer School

In-Ice Component:

Act as triggers for

• Radar system: Transmitter, receivers

Picture Credit: Dylan Frikken

Independent reconstruction, validates radar method

10/07/25

MARES - Macroscopic Approach to the Radar E. Huesca Santiago et al. 2024

