Searching for Quantum Decoherence in IceCube

Tanvi Krishnan (<u>tkrishnan@g.harvard.edu</u>) on behalf of the IceCube Collaboration NBIA Summer School(7/7/2025)

Image credit: Yuya Makino, IceCube/NSF

Our current understanding of gravity breaks down at the Planck scale

Image Credit: <u>Physics</u>

How does spacetime behave at the Planck scale?

Image Credit: <u>Physics</u>

Neutrinos as interferometers

Interferometry to understand structure of vacuum (search for ether):

Gravitational wave interferometry to understand contraction of spacetime:

IceCube Collaboration. Nature Physics 20, 913-920 (2024)

Neutrino interferometry to measure small-scale spacetime structure

Credit: Johan Jarnestad/The Royal Swedish Academy of Sciences

Decoherence Theory

- Neutrinos can maintain quantum coherence over large distances
 - May be absorbed and reradiated by Virtual Black Holes (VBHs)
- Two interaction modes:
 - State selection
 - Phase perturbation

T. Stuttard and M. Jensen. Phys. Rev. D 102 (2020) 115003. IceCube Collaboration. Nature Physics 20, 913-920 (2024)

5

Decoherence Theory

- Neutrinos can maintain quantum coherence over large distances
 - May be absorbed and reradiated by Virtual Black Holes (VBHs)
- Two interaction modes:
 - State selection
 - Phase perturbation
- Flavor distribution differs from expectation?

<u>T. Stuttard and M. Jensen. Phys. Rev. D 102 (2020) 115003.</u> IceCube Collaboration. Nature Physics 20, 913-920 (2024)

6

How do we model this?

Lindblad Master Equation:

$\dot{\rho} = -i[H,\rho] - \mathcal{D}[\rho]$ Standard unitary time evolution

T. Stuttard and M. Jensen. Phys. Rev. D 102 (2020) 115003. IceCube Collaboration. Nature Physics 20, 913-920 (2024) Non-unitary contributions from quantum gravity

How do we model this?

Decoherence Superoperator:

 $\Gamma(E_{\nu})$

$D_{\text{state selection}} = \text{diag}(0, \Gamma, \Gamma, \Gamma, \Gamma, \Gamma, \Gamma, \Gamma, \Gamma, \Gamma)$ $D_{\text{phase perturbation}} = \text{diag}(0, \Gamma, \Gamma, 0, \Gamma, \Gamma, \Gamma, \Gamma, 0)$

T. Stuttard and M. Jensen. Phys. Rev. D 102 (2020) 115003. IceCube Collaboration. Nature Physics 20, 913-920 (2024)

 $\int E_{n} \sqrt{n} \quad n = \text{Energy dependence}$ $\Gamma_0 =$ Inverse of coherence length at E_0

Decoherence Oscillograms

State selection

The IceCube Neutrino Observatory

Credit: IceCube Collaboration

- World's largest neutrino telescope
- Located at the South Pole
- 5,160 Digital Optical Modules (DOMs) observe Cherenkov radiation in ice

Credit: IceCube Collaboration

- We use 10.7 years of atmospheric neutrino events in IceCube
- Data + MC events are binned into 20 zenith, 22 energy and 2 morphology bins for the fit
- We use GollumFit, an open-source framework for binned-likelihood neutrino telescope analyses

Credit: IceCube Collaboration arXiv:2506.04491

IceCube Collaboration. Phys. Rev. Lett. 133, 201804 (2024)

Analysis Binning

- Fit over 36 nuisance parameters in 6 categories
 - 1. Cosmic ray spectrum properties
 - 2. Hadronic production parameters
 - 3. Astrophysical neutrino flux properties
 - 4. Neutrino attenuation parameters
 - 5. Overall normalization
 - 6. Detector response

IceCube Collaboration. Phys. Rev. Lett. 133, 201804 (2024)

Systematics

Stronger constraint

• Most significant improvement for models with strong energy dependance

IceCube Collaboration. Nature Physics 20, 913-920 (2024)

Significant Gain in Sensitivity

Significant Gain in Sensitivity

Stronger constraint

- Most significant improvement for models with strong energy dependance
- Factor of improvement of my sensitivities compared to previous analysis:

n	Phase	State selection
Ο	1.18x	1.2OX
1	1.79X	1.79X
2	2.98x	2.98x
3	8.20x	8.20x

IceCube Collaboration. Nature Physics 20, 913-920 (2024)

Probing the Planck Scale

- Naturalness: Expect $\mathcal{O}(L_P)$ coherence length for neutrinos with energies $\mathcal{O}(E_P)$
- Our analysis is sensitive to Planck-scale physics below natural expectation for n = 0, 1, 2
 - n = 2 motivated by probing quantum decoherence effects in string theory models
- Approach Planck-scale natural expectation for n = 3

IceCube Collaboration. Nature Physics 20, 913-920 (2024) T. Stuttard and M. Jensen. Phys. Rev. D 102 (2020) 115003.

- years of atmospheric muon neutrino events from IceCube
- constraints
- Unblinded results coming soon!

Speaker acknowledges support from the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Department of Energy Computational Science Graduate Fellowship

• This analysis searches for neutrino decoherence due to quantum gravity using 10.7

• We obtain a significant sensitivity boost from previous IceCube world-leading

Thank you! Any questions?

· · · · · · · · · · · · · · · · · ·

Image credit: Yuya Makino, IceCube/NSF

Image credit: Yuya Makino, IceCube/NSF

MEOWS: Matter-Enhanced Oscillations with Steriles

- Dataset originally developed for sterile neutrino analyses
- Very pure, well-understood dataset of atmospheric neutrino tracks
 - Also used for other analyses, including an eV-scale sterile neutrino search (PRL 2024)
- Multiple iterations of dataset:
 - Previous IceCube Decoherence search (Nature Physics, 2024): 7.6 years
 - This work: 10.7 years

<u>IceCube Collaboration. Nature Physics 20, 913-920 (2024)</u> <u>IceCube Collaboration. Phys. Rev. Lett. 133, 201804 (2024)</u>

What has been improved?

Reco Energies:

Also:

- New energy estimator
- Thru/starting track separation
- New BDT selection for final-level cuts

IceCube Collaboration. Phys. Rev. Lett. 133, 201804 (2024)

Previously:

305, 735 events

7.634 years

500 GeV to 10 TeV

This work: 368, 071 events 10.669 years 500 GeV to 100 TeV

\rightarrow larger, higher purity sample

IceCube Collaboration. Phys. Rev. D 110, 092009 (2024)

Energy Resolution

Reconstructed Oscillograms

State selection $n = 2, \Gamma_0 = 10^{-18}$

Systematic Impacts

Systematic Impacts

State selection

36 nuisance params used in this analysis

Updated to better match recent measurements

25

	Systematic	Central	Prior (1σ)	Range	Implementation
	Detector Parameters				
	Normalization	1.0	± 0.2	[0.1,3]	
	DOM efficiency	1.27	$\pm 10\%$	[1.234, 1.346]	6 support point
	Ice Amplitude 0	0.0	± 1.0	[-3,3]	Correlation (see
	Ice Amplitude 1	0.0	± 1.0	[-3,3]	"
-	Ice Amplitude 2	0.0	± 1.0	[-3,3]	"
	Ice Amplitude 3	0.0	± 1.0	[-3,3]	"
	Ice Phase 1	0.0	± 1.0	[-3,3]	"
	Ice Phase 2	0.0	± 1.0	[-3,3]	"
	Ice Phase 3	0.0	± 1.0	[-3,3]	"
	Ice Phase 4	0.0	± 1.0	[-3,3]	"
	Forward Hole Ice	-1.0	± 10	[-5.35, 1.85]	5 support point
	Conventional Flux Parameters				
	Atm. Density	0	± 1.0	[-3,3]	Spline
	Kaon energy loss	0.0	± 1.0	[-3,3]	Spline
	K^{+}_{158G}	0.0	± 1.0	[-2, 2]	Correlation (see
	K_{158G}^{-}	0.0	± 1.0	[-2, 2]	"
	π^{+}_{20T}	0.0	± 1.0	[-2, 2]	"
	π_{20T}^{20T}	0.0	± 1.0	[-2, 2]	"
	\mathbf{K}_{2P}^{+}	0.0	± 1.0	[-1, 2]	"
	K_{2P}^{-}	0.0	± 1.0	[-1.5, 2]	"
	π_{2P}^{+}	0.0	± 1.0	[-2, 2]	"
	π_{2P}^{-}	0.0	± 1.0	[-2, 2]	"
	p_{2P}	0.0	± 1.0	[-2, 2]	"
	n_{2P}	0.0	± 1.0	[-2, 2]	"
	GSF_1	0.0	± 1.0	[-4, 4]	"
	GSF_2	0.0	± 1.0	[-4, 4]	"
	GSF_3	0.0	± 1.0	[-4, 4]	"
	GSF_4	0.0	± 1.0	[-4, 4]	"
	GSF_5	0.0	± 1.0	[-4, 4]	"
	GSF_6	0.0	± 1.0	[-4, 4]	"
	High-energy Flux Parameters				
	Normalization	0.787	± 0.36	[0,3]	
	$\Delta \gamma_1$, tilt from -2.5	0.0	± 0.36	[-2,2]	
	$\Delta \gamma_2$, tilt from -2.5	0.0	± 0.36	[-2,2]	
	Pivot energy in log10	-	-	[4,6]	Uniform prior
	Cross-section Parameters				
	ν cross section	1.0	± 0.1	[0.824, 1.176]	30 support poin
	$\bar{\nu}$ cross section	1.0	± 0.1	[0.824, 1.176]	"

Systematic Effects

• Effect of shifting systematics by $\pm 1\sigma$

Systematic Effects

• Effect of shifting systematics by $\pm 1\sigma$

Previous IceCube Constraints

- World's strongest limits on neutrino decoherence from quantum gravity
 - 30-50 times more sensitive for n=0
 - 6-8 orders of magnitude more sensitive for n=2

IceCube Collaboration. Nature Physics 20, 913-920 (2024)

