

NBIA Summer School: Neutrinos – here, there & everywhere

Ludwig Neste on behalf of the IceCube Collaboration 2025-07-08

The Galactic Plane and IceCube

Galactic Neutrinos:

CR+ISM: π^+, π^-, π^0 (~ 1 : 1 : 1) from hadronic p-p interactions $\pi^0 \rightarrow \gamma \gamma$ $\pi^+ \rightarrow \mu^+ \nu_\mu \rightarrow e^+ \nu_\mu \overline{\nu}_\mu \nu_e$

The Galactic Plane is Challenging for IceCube

← Track point source sensitivity (2020, doi:10.1103/PhysRevLett.124.051103)

Galactic plane is mainly in the south Center is at $\delta=-29^\circ$

 \Rightarrow Challenging observation for IceCube

The Galactic Plane is Challenging for IceCube

First IC GP results using tracks \rightarrow (1.5 σ 2017, doi:10.3847/1538-4357/aa8dfb)

Using unbinned maximum \mathscr{L} template fit Upper limits (KRA_{γ}, red) above modeled flux ← Track point source sensitivity (2020, doi:10.1103/PhysRevLett.124.051103)

Galactic plane is mainly in the south Center is at $\delta = -29^{\circ}$

 \Rightarrow Challenging observation for IceCube

Model	n _s	Flux	Significance
Fermi-LAT π^0	748	$21.8^{+5.3}_{-4.9}$	4.71σ
KRA^{5PeV}_{γ}	276	$0.55^{+0.18}_{-0.15}\times {\rm MF}$	4.37σ
KRA^{50PeV}_{γ}	211	$0.37^{+0.13}_{-0.11}\times {\rm MF}$	3.96σ

- → Trials-corrected significance:
 4.48σ ν observation of the Milky Way
- \rightarrow GP flux contributes approx. 10 % to astrophysical flux
- $\rightarrow\,$ Partial contribution from unresolved sources in the GP can not be excluded

Mirco Hünnefeld

Ludwig Neste

Downgoing cascades are easier to differentiate from muons, but hard to filter out

2023 Machine Learning based event-selection increased dataset by a factor of 20: ~60 000 cascade events

2. Account for detector acceptance

1. Diffuse neutrino emission in the GP

2. Account for detector acceptance

3. Account for per-event angular unc. σ_i

1. Diffuse neutrino emission in the GP

2. Account for detector acceptance

3. Account for per-event angular unc. σ_i

3. Account for per-event angular unc. σ_i

2. Account for detector acceptance

3. Account for per-event angular unc. σ_i

2. Account for detector acceptance

3. Account for per-event angular unc. σ_i

2. Account for detector acceptance

1. Diffuse neutrino emission in the GP

3. Account for per-event angular unc. σ_i

2. Account for detector acceptance

 \Rightarrow Use diffuse v prediction as spatial PDF: $\mathcal{S}(\alpha, \delta | \sigma) = \mathcal{T}(\alpha, \delta | \sigma)$

Don't forget to account for the large signal contanimation in the scrambled background-PDF! (Signal substraction) Ludwig Neste

Comparison to High Energy γ Rays

- Compare IC GP results from high energy γ-ray observatories
 - Scale IC GP result to Tibet AS- γ analysis region
 - Convert γ -flux to ν flux assuming pure π^0 -decay
- ⇒ Consistent with high energy γ -rays But: Best fit π^0 is ~ 5× higher than simple extrapolation

Ludwig Neste 7

Comparison to High Energy γ Rays

- Compare IC GP results from high energy γ-ray observatories
 - Scale IC GP result to Tibet AS- γ analysis region
 - Convert γ -flux to ν flux assuming pure π^0 -decay
- ⇒ Consistent with high energy γ -rays But: Best fit π^0 is ~ 5× higher than simple extrapolation
- ⇒ It's difficult to compare subregions and spectral indices of the result

New Analysis Method: Segmented Templates

$$\mathcal{L}(\gamma, n_s) = \prod_{i=1}^{N} \left[\frac{n_s}{N} S_i(\gamma) + \frac{N - n_s}{N} B_i \right]$$

New Features $S = \sum_{k=1}^{M} \mathbf{w}_{k} \cdot \mathscr{C}(E \mid \delta, \mathbf{y}_{k}) \cdot \mathcal{T}_{k}(\alpha, \delta \mid \sigma)$

2M free parameters:

Segmented Template Analysis

- Spectral index γ for each segment
- Flux normalization Φ for each segment
- Not dependent on neutrino emission models
- Independent result for each segment

Outlook: Gamma Ray Inspired Segmentations Schemes

Ludwig Neste 9

Conclusion: IceCube is not done with the Galaxy, yet

My work: Segmented fit of the GP Segmented GP flux and γ measurement

Matthias Thiesmeyer (PhD student, Madison): Updated GP analysis using combined datasets

- Cascades+Through-going Tracks+Starting Tracks
- More data
- Improved ice models

Backup

Current Cascade Reconstructions

Ludwig Neste 11

Updated PS Sensitivities (2025)

- Scattering
- Absorption
- ≈ Homogeneous
- 🜊 Dynamic
 - North

- ⇒ Better pointing
- ⇒ Denser layout
- \rightarrow No depth-dependency
- ⇒ Changing geometry
- \rightarrow Optimal for southern sky

- 1 Scattering
- \rm Absorption
- Inhomogeneous
- 🧊 Static
 - South Pole

- ⇒ Poorer pointing
- ⇒ Sparser layout
- ⇒ Depth-dependency
- ⇒ Fixed geometry
- ⇒ Optimal for northern sky

The Leap: Deep Neural Networks (DNNs)

- Convolutional & fully connected layers
- DNNs optimized for (hexagonal) layout
- Built-in uncertainty estimation
- Arbitrary labels (e.g. event-type)
- Fast reconstruction $\mathcal{O}(ms)$

The Leap: Deep Neural Networks (DNNs)

- Convolutional & fully connected layers
- DNNs optimized for (hexagonal) layout
- Built-in uncertainty estimation
- Arbitrary labels (e.g. event-type)
- Fast reconstruction $\mathcal{O}(ms)$

- Previous cascade selection:
 - \sim 2000 events
- DNN-based cascade selection:
 - ~ 60 000 events

The Leap Part 2: A new Cascade Reconstruction

- Hybrid: DNNs & Likelihood
- Utilizes physical symmetries
- Predicts per-DOM PDF parameters \vec{p}_i given an event hypothesis $\vec{x}, \Phi, \Theta, E, t$
- Maximize $\mathcal{L}(\vec{x}, \Phi, \Theta, E, t | \text{data})$

The Leap Part 2: A new Cascade Reconstruction

- Hybrid: DNNs & Likelihood
- Utilizes physical symmetries
- Predicts per-DOM PDF parameters \vec{p}_i given an event hypothesis $\vec{x}, \Phi, \Theta, E, t$
- Maximize $\mathcal{L}(\vec{x}, \Phi, \Theta, E, t | \text{data})$

- Enhances directional reconstruction in all energy regions
- \cdot ~5° median resolution at high energies

Stockholm

University

Through-going northern tracks: CRINGE with 2.7σ arXiv:2308.08233

Starting tracks: Fermi π^0 with 1.5 σ

DNN Cascades Skyscan

- Assume a point source at every "pixel" in the sky
- Compute significance and fit γ
- ⇒ Galactic plane emerges visually among the fluctuations

Unbinned maximum Likelihood approach: $\mathscr{L}(n_s, \theta) = \prod_{i=1}^{N} \left[\frac{n_s}{N} S(\mathbf{x}_i | \theta) + \frac{N - n_s}{N} B(\mathbf{x}_i) \right]$

- Background PDF *B* is obtained from data via RA scrambling
- Distribution of test statistic $\Lambda = 2 \log \frac{\mathscr{L}(n_s = \hat{n}_s)}{\mathscr{L}(n_s = 0)}$ evaluated on randomized data
- \Rightarrow *p*-values are robust against systematic uncertainty
 - Signal PDF S uses spatial and energy information: $S = \mathscr{E}(E|\delta) \cdot \mathscr{S}(\alpha, \delta|\sigma)$
 - For large signals: When using data-driven background-PDF, subtract the signal from it!

Stockholm University