Machine Learning
Basics of ML

“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”
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Comment on “The AI Hype”

Machine Learning is a tool like all others (logic, math, computers, statistics, etc.)

Despite the connotations of machine learning and artificial
intelligence as a mysterious and radical departure from
traditional approaches, we stress that machine learning has a
mathematical formulation that is closely tied to statistics, the
calculus of variations, approximation theory, and optimal

control theory.
[PDG 2024, Review of Machine Learning]

So this is just a sharpening of our tools... albeit a cool sharpening!
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Outline

What is ML & Humans vs. ML

Two main ingredients:

- Universal Approximation Theorems
- Stochastic Gradient Descent

The linear vs. non-linear case

Tree based models

Neural Network models

Loss functions

Train, Validation & Test
Preprocessing

Domain Adaptation:

- What are the dangers?

- MC signal, data background

- How to find data-MC differences

- How to mend data-MC differences
- Training in/with data

Coding example



What is ML?



What is Machine Learning?

While there is no formal definition, an early attempt is the following intuition:

“Machine learning programs can perform tasks

without being explicitly programmed to do so.”
[Arthur Samuel, US computer pioneer 1901-1990]

“Little Peter is capable of finding his way home
without being explicitly taught to do so.”



What is Machine Learning?

While there is no formal definition, an early attempt is the following intuition:

"A computer program is said to learn from
experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as

measured by P, improves with experience E.”
[T. Mitchell, “Machine Learning” 1997]

“Little Peter is said to learn from traveling around with
respect to finding his way home and the time it takes, if his
ability to find his way home, as measured by the time it
takes, improves as he travels around.”



Humans vs. ML
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.
Linear Humans: Humans:

Computers: Computers:
Non- Humans: Humans:
linear Computers: Computers:

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!

That is essentially what Machine Learning has enabled! ”
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Dimensionality and Complexity

Humans & Computers are good at seeing/understanding linear data in few
dimensions:

Weight

Gender
Female

Male

Height




Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
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Dimensionality and Complexity

However, when the dimensionality goes beyond 3D, we are lost, even for simple
linear data. Computers are not...

Iris Data (red=setosa,green=versicolor,blue=virginica)
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
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This illustration is just a silly attempt at complexity.
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Dimensionality and Complexity
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Types of ML



Unsupervised vs. Supervised
Classification vs. Regression

Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)... [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).

But of course also over here! We will be mostly on this side!
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Two main ingredients:

1. Solutions exists
2. How to find them



Solutions exists

(Technically called Universal Approximation Theorems)

25



Where to separate?

Look at the red and green points, and imagine that you wanted to draw a curve

that separates these.
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Where to separate?

Look at the red and green points, and imagine that you wanted to draw a curve

that separates these.

This could be an example:
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Generally, we want to find a function that does this well!
But how to write such a function? In N-dim space?!?
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Universal Approx. Theorems

A simple function can be
obtained simply by asking
a lot of questions:
Question: Is B > 0.23?
Answer: Yes — Red
Answer: No — Blue

This question is illustrated
in the drawing by the
horizontal line with red
and blue on the sides.

A Decision Tree consists
of asking many such
questions, corresponding
to setting a lot of lines.
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Universal Approx. Theorems

Decision tree

A simple function can be
obtained simply by asking
a lot of questions:
Question: Is B > 0.23?
Answer: Yes — Red '
Answer: No — Blue . 44 y
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Universal Approx. Theorems
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Universal
Approximation Theorems

Theorem 5.1.1 (Universal Approximation Theorem) *° Let o be a non-
constant, bounded, and monotone-increasing continuous function. Let I,
denote the my-dimensional unit hypercube [0,1]™0. The space of contin-
uous functions on Ip, is denoted as C(ly,). Then given any function
f € C(I,) and € > 0 there exists a set of real constants a;, b; and Wij,
wherei=1,... myand j=1,...,mqp such that we may define

nq my
F(X1,. . Xmy) = Y ai0 (Z w;iX;j + bi) (5.6)
i=1 j=1
as an approximate realization of the function f; that is,

|F(x1, .- Xmy) — (X1, -0, Xmy)| < € (5.7)

for all x1,x2,...,%Xm, that lie in the input space.
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Universal
Approximation Theorems

Theorem 5.1.1 (Universal Approximation Theorem) *° Let o be a non-

Summary:

Neural Networks etc. can approximate
functions in any dimension very well!

F(xy,..., Xmy) = Y 4i0 kz w;iX;j + bl-) (5.6)
i=1 j=1
as an approximate realization of the function f; that is,
|F(xq,..., Xmg) — f(x1,. .., Xmy)| < € (5.7)
forall x1,x3,..., Xm, that lie in the input space.
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Universal Approx. Theorems

Such approximations typically entails a large amount of parameters, for which

the UATs give no recipe on how to find - only that such a construction is possible.

36



Universal Approx. Theorems

One main ingredient behind ML are Universal Approximation Theorems (UAT).

These imply that Neural Networks can approximate a very wide variety of
functions given simple function constraints and enough degrees of freedom.

This typically entails a large amount of weights, for which the UATs give no
recipe on how to find - only that such a construction is possible.

Even if one assumes that there is no noise in the training set, then there will still
be infinitely many functions that passes through all training points and not all

of them will have the same error on an unseen point (i.e. the test set).

So how to find actual solutions that are behaving nicely?

37



How to find these

(Technically called Stochastic Gradient Descent)

38



Stochastic Gradient Descent

The way to obtain the parameters/weights of ML algorithms,
is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from
the last layer (avoiding redundancies). See Goodfellow et al. for details.
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Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation
Algorithms". Deep Learning. MIT Press. pp. 200-220. ISBN 9780262035613.
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(Normal) Gradient Descent

The choice of loss function, L, depends on the problem at hand, and in particular
what you find important! You want to minimise this with respect to the model

parameters O: 1 N
L(0) = N ZLz’(@)

In order to find the optimal solution, one can use Gradient Descent, typically
based on the whole dataset:

N
0.1 =0; — VL) =0, — % N VLi(6)

This is the procedure used by e.g. Minuit and other minimisation routines.

Note the very important parameter: Learning rate n. 40



(Nasty) Loss Landscapes

Loss landscapes may (even in 2D) be very
complicated, with many local minima.

,,,,,

arXiv: 1712.09913
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Stochastic Gradient Descent

The way to obtain the parameters/weights of ML algorithms,
is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from
the last layer (avoiding redundancies). See Goodfellow et al. for details.

The gradient descent is made stochastic
(and fast) by only considering a fraction
(called a “batch”) of the data, when
calculating the step in the search for
optimal parameters for the algorithm.
This allow for stochastic jumping, that
avoids local (false) minima.

,,\»

A

Ordinary
Gradient Descent

>1
S

Stochastic
Gradient Descent

Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation
Algorithms". Deep Learning. MIT Press. pp. 200-220. ISBN 9780262035613.
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Stochastic Gradient Descent

In order to give the gradient descent some degree of “randomness” (stochastic),
one evaluates the below function for small batches instead of the full dataset.

N
0= 1 = 0; \gVL(0) =85+ % N VLi(6)

The algorithm thus becomes:

e Choose an initial vector of parameters w and learning rate 7).
e Repeat until an approximate minimum is obtained:

e Randomly shuffle examples in the training set.
e Fort =1,2,...,n,do:

ew:=w—nVQ;(w).
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Not only does this vectorise well and gives smoother descents, but with

decreasing learning rate, it “almost surely” finds the global minimum

(Robbins-Siegmund theorem).




Learning Rate Schedulers

But, there is no reason to consider a fixed value for the learning rate!

More practically, one would typically adapt the learning rate to the situation:
e When exploring: Use larger learning rate.

e When exploiting: Use lower learning rate (when converging).

Below is illustrated what happens, when the learning rate is right/wrong.

1(0)

Too low

1(6)

Just right

//

1(0)

Too high

From: https://www.jeremyjordan.me/nn-learning-rate/

A small learning rate
requires many updates
before reaching the
minimum point

The optimal learning
rate swiftly reaches the
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors
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Choosing Learning Rate

Too low learning rate: Convergence very (too) slow.
Too high learning rate: Random jumps and no convergence.
You want to increase it until it fails and then just below...
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Learning Rate Schedulers

First, we want to investigate, which learning rates are relevant (and best) for
our problem. The best learning rate is when the loss decreases the fastest.
Thus we look for the greatest slope of the loss as a function of learning rate:

learning rate is too
low, loss function
doesn’t improve

From: https://www.jeremyjordan.me/nn-learning-rate/
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Learning Rate Schedulers

For this reason, Learning Rate Schedulers have been “invented”.
There are MANY different types, and as usual, there is no “right answer”.

However, it is fair to say, that the learning rate is (especially for NNs) the most
important Hyper Parameter, and thus it requires attention.

Learning rate

107!

1072

103

Step decay of learning rate

From: https://www.jeremyjordan.me/nn-learning-rate/
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Ingredients for ML

So now we know that at least in principle:
* a solution exists (Universal Approximation Theorem) and
e that it can be found (Stochastic Gradient Descent).

But this does not in reality make us capable of getting ML results.

We (at least) also need:

e actual functions/algorithms for making approximations
Boosted Decision Trees (BDTs) & Neural Networks (NNs)

e knowledge about how to tell them what to learn
Loss functions (and how to minimise these)

e a scheme for how to use the data we have available
Training, validation, and testing samples & Cross Validation
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Classification

Null Hypothesis

Alternative Hypothesis

Do Not Reject Null
STATISTICAL

DECISION: ,
Reject Null

REALITY
Null is True Null is False
1-a B
Correct Type Il error
a 1-B
Type | error Correct
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Classification

Null Hypothesis Alternative Hypothesis

Machine Learning typically enables
a better separation between hypothesis

DECISION: , o 1-B
Reject Null
Type | error Correct
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40000 A

Frequency / 0.01

10000 A

Typical ML Distribution

An ML score distribution from binary classification typically looks as follows:

30000 A

20000 A

1 Signal
Background

Challenges:
e Hard to inspect visually
e Numerically challenging

0.2

d4 Ok
p, ML classification score

0.8

1.0
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Logit transformation

Once logit transformed, it takes on a “nicer” (and numerically friendly) shape:
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Logit transformation

Once logit transformed, it takes on a “nicer” (and numerically friendly) shape:
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Logit transformation

Once logit transformed, it takes on a “nicer” (and numerically friendly) shape:

Frequency / 0.2

4000 -

3500 A

3000 A

2500 A

N
o
o
o

=
Ul
o
o

1000 -

500 A

1 Signal
Background

Logit transformation:
* Hasy to inspect visually
* Numerically stable

S

-10.0

—%5 —50 —iS Ob 25 50 fS 160
Logit(p), Logit of ML classification score
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Hypothesis testing

Hypothesis testing is like a criminal trial. The basic “null” hypothesis is Innocent
(called Ho) and this is the hypothesis we want to test, compared to an
“alternative” hypothesis, Guilty (called Hj).

Innocence is initially assumed, and this hypothesis is only rejected, if enough
evidence proves otherwise, i.e. that the probability of innocence is very small
(“beyond reasonable doubt”). This is summarised in a Contingency Table:

Truly innocent Truly guilty
(Ho is true) (H; is true)
Acquittal Right decision Wrong decision
(Accept Ho) True Positive (TP) | False Negative (FN)
Conviction Wrong decision Right decision
(Reject Ho) False Positive (FP) | True Negative (TN)

The rate of FP and FN are correlated, and one can only choose one of these!
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ROC_CURVE
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http://en.wikipedia.org/wiki/Graph_of_a_function

Which metric to use?

There are a ton of metrics in hypothesis testing, see below. However,
those in the boxes below are the most central ones.

One metric - not mentioned here - is the Area Under the Curve (AUC),
which is simply an integral of the ROC curve (thus 1 is perfect score).
This is sometimes used to optimise performance (loss), but not great!

Predicted condition

True condition

Total S Conditi i Accuracy (ACC) =
e e o) 5 _ ondition positive - .
. Condition positive Condition negative Prevalence = Sy population 3 True positive + % True negative
population 2 Total population
i Positive predictive value (PPV),
Predl.c.ted - False positive, - - ( ) False discovery rate (FDR) =
condition True positive Precision = 3 False positive
i Type | error 2 True positive 5 Predicted condition positive
positve 3 Predicted condition positive
Predicted ) . . e
- False negative, . False omission rate (FOR) = Negative predictive value (NPV) =
condition True negative 3 False negative = True negative
i Type Il error 3 Predicted condition negative < Predicted condition negative

True positive rate (TPR), Recall, Sensitivity, False positive rate (FPR), Fall-out,

probability of detection, Power probability of false alarm Positive likelihood ratio (LR+) = %
_ __ 2 True positive _ __ 2 False positive Diagnostic odds r _
~ Z Condition positive ~ 2 Condition negative ratio (DOR) 1 Score =
Specifici o . Precision - Recall
pecificity (SPC), Selectivity, True _ LR+ 2 BrecisioneaRecall

False negative rate (FNR), Miss rate . = [R=
_ _3 False negative negative rate (TNR) Negative likelihood ratio (LR-) = .m—g LR
~ Z Condition positive Z True netlvg _

https:/ /en.wikipedia.org /wiki/Receiver_operating_characteristic
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Matthew’s Correlation Coefficient

Given a Contingency Table:

Got well Remained ill
Medicin 28 5
No Medicin 19 9

One of the commonly used measures of separation the MCC, which
(in this case) is the Pearson @, and related to the ChiSquare:

TP x TN — FP x FN
\/(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

MCC =

Read more at:
https:/ /en.wikipedia.org /wiki/Phi_coefficient

However, when optimising an algorithm and giving continuous
scores in the range ]0,1[, there are other things to consider (see talk on
Loss Functions).


https://en.wikipedia.org/wiki/Phi_coefficient
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Decision tree learning

“Tree learning comes closest to meeting
the requirements for serving as an
off-the-shelf procedure for data mining”,

because it:
e isinvariant under scaling and various other transformations of feature values,
* is robust to discontinuous, categorical, and irrelevant features,
e produces inspectable models.

HOWEVER... they are seldom accurate (i.e. most performant)!

[Trevor Hastie, Prof. of Mathematics & Statistics, Stanford]

For tabular data, I tend to disagree with the two last statements!
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Decision Trees

A decision tree divides the parameter
space, starting with the maximal
separation. In the end each part has a
probability of being signal or
background.

® Works in 95+% of all problems!

® Fully uses non-linear correlations.

But BDTs require a lot of data for
training, and is sensitive to
overtraining.

Overtraining can be reduced by
limiting the number of nodes and

number of trees.

Decision trees are from before 1980!!!

oA

Background
Signal
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Boosting...

There is no reason, why you can not
have more trees. Each tree is a simple
classifier, but many can be combined!

To avoid N identical trees, one assigns
a higher weight to events that are hard
to classity, i.e. boosting:

Boost weight

: . 1 —err
First classifier o=

err
/ 1 Ncollection\

YBoost (X) = : In(;) - hi(x
OOSt( ) Ncollection ; (72( )
Parameters in event N Individual tree

Boosting is from 1997 (AdaBoost).

oA

X

Background
Signal

eO
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Boosting...

; oA
There is no reason, why you can not X

have more trees_Each tree is a simnle

Background

classifier, but m

el JRETULN. ..

a higher weight

to classity, i.e. b{

First classifier

/ of misclassified entries_ x|

increasing the weight /

YBoost (X) =
008 N, collection 7 / /
Parameters in event N Individual tree \;O >
X2>b &

Boosting is from 1997 (AdaBoost).
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Boosting illustrated

Boosting provides a reweighing scheme giving harder cases higher weights.
At the end of training, the trees are collected into an “ensemble classifier”.

‘..O‘ ® @
o5 .‘O ON | O
e 2% — 09 90¢
o0 QO
Original Data Weighted data Weighted data
Ensemble
Classifer
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Where to split?

How does the algorithm decide which variable to split on and where to split?
There are several ways in which this can be done, and there is a difference
between how to do it for classification and regression. But in general, one would

like to make the split, which maximises the improvement gained by doing so.

In classification, one often uses the average binary cross entropy (aka. “log-loss”):

N
1 . ’
e —N Z [yn log 9, + (1 _ y”) log(l - yn)]

n=1
Here, Yn, is the truth, while @n is the estimate (in [0,1]).

Other alternatives include using Gini coefficients, Variance reduction, and even
ChiSquare. However, in classification the above is somewhat “standard”.
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Housing Prices decision tree

Decision tree for estimating the price in the housing prices data set:

/

samples = 6986
value = 1963348.0471

AN

samples = 4941
value = 1530318.8873

J/

/

SCHOOL_DISTANCE_1 < 1695.405

mse = 9.79228685447e+11
samples = 3444
value = 1259853.806

CONSTRUCTION_YEAR < 1985.5

mse = 5.10892846075e+11
samples = 978
value = 9536961452

o

("SIZE_OF_HOUSE <235.5
mse = 4.99606026506e+12
samples = 1497

L value = 2152551.1784 )

(" POSTAL_CODE < 3680.0
mse = 3.68022716583e+12
samples = 1345

(" POSTAL_CODE <3110.0
mse = 1.16202252824e+13

 \

("SIZE_OF HOUSE < 144.5
mse = 2.36452076724e+12

L value = 2019988.1539 )

SIZE_OF_HOUSE < 462.0
mse = 1.3836907023e+13
samples = 7014
value = 2028954.3037

SPERRKET DSTICE
“Sarmareea.ia

vake o4

\

False

(" POSTAL_CODE < 7980.0
mse = 1.51080057315e+13
samples = 152

L value = 3325559.5197 )

CONSTRUCTION_YEAR < 1812.0
mse = 2.97888770906e+14
samples = 28
value = 18397715.3214

mse = 0.0

samples = 1
value = 74000000.0

v i

SUPERMARKET_DISTANCE_1 < 1224.845
mse = 4.37090668214e+11

samples =

value = 856331.2918

802

SIZE?OF?HOUSE <975
mse = 6.07151144402e+11
samples = 176
value = 1397370.0795

POSTAL_CODE < 3395.0
mse = 2.25780802539e+12
samples = 116
value = 3138769.319

CONSTRUCTION_YEAR < 1993.5
mse = 3.68519260761e+12
samples = 1229
value = 1914391.2335

(" POSTAL_CODE < 42305
mse = 4.84879610682¢e+12
samples = 100

\__ Vvalue =2580827.09 )

SUPERMARKET_DISTANCE_1 <2
mse = 3.17195326885e+1
samples = 52
value = 4757737.2692

/

/

/

\

/ 1\

/__\




Housing Type decision tree

Decision tree for determining, if a house will be sold for more or less than 2Mkr.

L BODE < 2350.0

 \ class =0 )

('SIZE_OF_HOUSE <755 )
gini = 0.4875
samples = 2477
value = [1434, 1043]

(POSTAL_CODE < 2975.0 )
gini = 0.3416
samples = 1638

True

value = [1280, 358]

L class =0

o

('SIZE_OF_HOUSE <88.5)
gini = 0.256
samples = 1221
value = [1037, 184]

L class =0 )

/

(POSTAL_CODE < 2550.0 )
gini = 0.193
samples = 989
value = [882, 107]

class =0

J

SIZE_OF_HOUSE < 116.5
gini = 0.4863
samples = 417
value = [243, 174]
class =0

POSTAL_CODE < 3395.0
gini = 0.4359
samples = 162
value = [52, 110]
class =1

VAN

T

POSTAL_CODE < 3395.0
gini = 0.376
samples = 255
value = [191, 64]
class =0

POSTAL_CODE < 3615.0
gini = 0.4521
samples = 7014
value = [2422, 4592]
class =1

POSTAL_CODE < 2695.0
gini = 0.2484
samples = 688

gini

POSTAL_CODE < 3085.0

samples = 110

=0.32

SIZE_OF_HOUSE < 98.5
gini =
samples = 52

0.4882

POSTAL_CODE < 3175.0
gini = 0.4717
samples = 126

CONSTRUCTION_YEAR < 1970.5

gini = 0.2173
samples = 129



XGboost - a neat little story!
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The HiggsML Kaggle Challenge

CERN analyses its data using a
vast array of ML methods. CERN
is thus part of the community
that developpes ML!

After 20 years of using Machine
Learning it has now become very
widespread (NN, BDT, Random
Forest, etc.)

A prime example was the Kaggle
“HiggsML Challenge”. Most
popular challenge of its time!
(1785 teams, 6517 downloads,
35772 solutions, 136 forums)

Higgs

challenge

I the HiggsML challenge

May to September 2014

When High Energy Physics meets Machine Learning




XGBoost history

History [edit]

XGBoost initially started as a research project by Tiangi Chenl8! as part of the Distributed (Deep) Machine
Learning_; Community (DMLC) group. Initially, it beg_;an as a terminal application which could be configured
using a libsvm configuration file. After winning the Higgs Machine Learning Challenge, it became well known
in the ML competition circles. Soon after, the Python and R packages were built and now it has packages for
many other languages like Julia, Scala, Java, etc. This brought the library to more developers and became
popular among the Kaggle community where it has been used for a large number of competitions.!”]

Whlle Tlanql Chen dld not Wln nggs Higgs Boson Machine Learning Challenge
himself, he provided a method challenge L e e e e e
used by about half of the teams, ...
the second place among them!

iew Data Discussion Leaderboard Rules

Description First Place:

For this, he got a Special award Evaluation « Gabor Melis - Diésd, Hungary, with this code and model documentation

Prizes Second Place:

and XGBOOSt became instantly About The Sponsors « Tim Salimans - Utrecht, The Netherlands, with this code and model documentation
. . imeline Third Place:
known in the community:. e

Winners « Pierre C. - Kremlin-bicétre, France, with this code and model documentation

72



XGBoost algorithm

The algorithms is documented on the arXiv: 1603.02754

XGBoost: A Scalable Tree Boosting System

Tiangi Chen
University of Washington
tqgchen@cs.washington.edu

ABSTRACT

Tree boosting is a highly effective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords

Large-scale Machine Learning

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].

In this paper, we describe XGBoost, a scalable machine
learning system for tree boosting. The system is available as
an open source package?. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions ® published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,

Anns sassmn T vindn  wvenn svmnd v 11T Aanlidinnma Mhna Asvnnan~

73



XGBoost algorithm

The algorithms is an extension of the decision tree idea (tree boosting), using
regression trees with weighted quantiles and being “sparcity aware” (i.e.
knowing about lacking entries and low statistics areas of phase space).

Unlike decision trees, each regression tree contains a continuous score on each

leaf:
tree1 tree2

b
e & B8
+2

+0.1 1 % +0.9

o2 (£

-0.9

f( @ )=2+09=29 f & »=1-09=-19
Figure 1: Tree Ensemble Model. The final predic-

tion for a given example is the sum of predictions

from each tree.
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Time per Tree(sec)

XGBoost algorithm

The method’s speed is partly

due to an approximate but fast
algorithm to find the best splits.

32

16}
8t
4t
2+
1

0.5¢
0.25¢
0.1251
0.0625¢

0.03125

Algorithm 1: Exact Greedy Algorithm for Split Finding

Input: I, instance set of current node

Input: d, feature dimension

gain < 0

G2 ier 9 H D ier b

for k=1 tom do

GrL <+ 0, H,L+ 0

for j in sorted(I, by x;) do
Gp+ Gr+g;, HL < Hp + h;
Gr+ G- GL, Hgrp «+ H — HL

score < max(score

G
Y Hy, +A + HH—i—A o H+A)

end
end
Output: Split with max score

Algorithm 2: Approximate Algorithm for Split Finding

Basic algorithm
.\,_x»_\>
.\.__‘.__,X,__»
~x
Sparsity aware algorithm
2 s | 1‘6
Number of Threads

for k=1 tom do

Propose Sk = {Sk1, Sk2, - Sk} by percentiles on feature k.
Proposal can be done per tree (global), or per split(local).
end

for k=1 tom do

Gkv —= Zje{jlsk,1)2xjk>sk,'v—l} gJ

Hyo == EjE{jlsk,1;2xjk>sk,1;—l} h;

end

Follow same step as in previous section to find max

score only among proposed splits. 75




XGBoost algorithm

In order to “punish” complexity, the cost-function has a regularised term also:
L($) =) 1 @i ys) + D Qx)
0 k
1
where Q(f) =T + 5)\||w||2

Table 1: Comparison of major tree boosting systems.

System exact approximate | approximate out-of-core sparsity parallel
greedy | global local aware

XGBoost yes yes yes yes yes yes
pGBRT no no yes no no yes
Spark MLLib | no yes no no partially yes
H20 no yes no no partially yes
scikit-learn yes no no no no no

R GBM yes no no no partially no
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XGBoost

As it turns out, XGBoost is not only very performant but also very fast...

The most important factor behind the success of XGBoost
is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of X(GBoost is due
to several important systems and algorithmic optimizations.

But this will of course only last for so long - new algorithms see the light of day
every week... day?

shortly after

Meanwhile, LightGBM has seen the light of day, and it is even faster...
Which algorithm takes the crown: Light GBM vs XGBOOST?

Very good blog with introduction to tree based learning
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Neural Network models



Neural Networks (NN)

NEURONS

INPUT LAYER1 LAYER 2 QUTPUT

In machine learning and related fields, artificial neural networks (ANNSs) are
computational models inspired by an animal’s central nervous systems (in particular
the brain) which is capable of machine learning as well as pattern recognition.

Neural networks have been used to solve a wide variety of tasks that are hard to
solve using ordinary rule-based programming, including computer vision and
speech recognition.

[Wikipedia, Introduction to Artificial Neural Network] o



A “Linear Network”

Imagine that we consider a “Linear Network”, and use the (simplest) architecture:
A single layer (linear) perceptron:

t(z) =ao+ » @z

As can be see, this is simply a linear regression in multiple dimensions or the
(linear) Fisher Discriminant.

Iuput Hidden Output
Well, then we could consider putting in layer layer loyer
a hidden (linear) layer:

tt(x) = t(ao + » a;w;)

Input #1
Input #2
Output

Input #3

Input #4

However, this doesn’t help anything
as combination of linear functions remain linear. It boils down to the Fisher again!

What we need is something non-linear in the function...
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Logistic Regression

Though the word “regression” suggests otherwise, this is in fact a way of doing
classification, as the “regression” is usually for a score (s) in the interval [0,1].

1.00-
0.75-

0.50-

Test Passed?

0.25-

0.00-

Hours Studied
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y (time to boundary)

Logistic Regression

Though the word “regression” suggests otherwise, this is in fact a way of doing
classification, as the “regression” is usually for a score (s) in the interval [0,1].

The model expands 1
s()

naturally with more = 1 4+ e—(@—w0)/0x—(y—yo)/0oy
parameters:

Logistic Regression Model with decision threshold
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Neural Networks

Neural Networks combine the input
variables using a “activation” function
s(x) to assign, if the variable indicates
signal or background.

The simplest is a single layer perceptron:

t(x)=s (ao + Z aiiﬁi)

This can be generalised to a multilayer

perceptron (shown right, 1 hidden layer):

t(x)=s (ai + Z aihi(:z:))
hi(x) =s (wio 4 sz‘jﬂ?j)

Activation function can be any
“sigmoidal” function.

1.1

1
09
S\T
0.8
0.7 4
0.6 4
0S54
0.4 4
034
0.2 4
0.1 e
»——'—’_'__—4 "
0 == -
01 T -
-10 9 7 -6

Input
layer

Input #1

Input #2

Input #3

Input #4

Hidden

layer

Output
layer

Output
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Neural Networks

Neural Networks combine the input
variables using a “activation” function
s(x) to assign, if the variable indicates
signal or background.

The simplest is a single layer perceptron:

t(x)=s (ao + Z az‘l’z‘)

o

1.1
14
o s(x) = ! e )
0.8- _ _ o~
1+e a(x—x0)
0.7 4
s 1y
0.5 j
0.4 A, { a=2
0.3+ -"/,./,'J. f a=1
0.2 o ','/ 'J'" a=1/2
014 e P,
e V4 =13
) = -
|;| l T T T T T T T T T
<10 9 8 7 -6 2 -1 0 S 6 7 8 9 0
Input Hidden Output
I
layer layer layer
Input #1
Input #2
Output

Input #3

Input #4



Activation Functions

There are many different activation functions, some of which are shown below.
They have different properties, and can be considered a HyperParameter.

Activation Functions

S|gmo|d l Leaky RelLU

_ 1 max(0.1z, )
0'(33')  14e—®
tanh Maxout
tanh(z) max(wi x + by, wl x + by)
ReLU ELU
max (0, x) {x z20

ae®*—1) z<0 - - i0

For a more complete list, check: https:/ /en.wikipedia.org/wiki/Activation_function
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Normalising Inputs

While tree based learning is invariant to (transformations of) distributions,
Neural Networks are not. To avoid hard optimisation, vanishing/exploding
gradients, and differential learning rates, one should normalise the input:

20 - |
I .Qb
| ‘~:
15 - | XN
: oo e *
| Ar
10 1 : ® ’.Q %e :...
l 200 oo ee°
2 l §¢ °F | o
5 - | e o
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Deep Neural Networks

Deep Neural Networks (DNN) are simply (much) extended NNs in terms of layers!

D
2 BEN XS
P
N2 A,,;O.I SEND

Output layer

Input layer

Yi ’

Hidden layer

X >

z, o, Target

Currently, DNNs can have up to
millions of neurons and
connections, which compares to
about the brain of a worm.

Instead of having just one (or few)
hidden layers, many such layers are
introduced.

This gives the network a chance to
produce key features and use them
for many different specialised tasks.

input layer

hidden layer 2 hidden layer 3

hidden layer 1

...to mimimise overtraining i

-
[ DO
P o

Note: —

—

This is why you get the funny =
spikes in your training loss.

_ u)

= G =
N/

37
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Deep Neural Networks

Deep Neural Networks likes to get both raw and “assisted” variables:

hidden layer 1 hidden layer 2 hidden layer 3

input layer

X > » 7, €—o, Targe
£l

Shallow networks

w
v
T

Introduction to Neural Networks

w
=)

ficance (o)

iscovery signi

0.5

D

0.0


https://www.analyticsvidhya.com/blog/2017/05/neural-network-from-scratch-in-python-and-r/

The role of NNs

The reason why NN play such a central role is that they are versatile:

e Recurrent NNs (for time series)

e Convolutional NNs (for images)
e Adversarial NNs (for simulation)
e Graph NNs (for geometric data)
® ctc.

Unlike trees, NNs typically make the “foundation”
of all the more advanced ML paradigms. However,
they are harder to optimise!

This is why trees a great for simpler tasks (i.e. data
that typically fits into an excel sheet [2110.01889]),

while NNs are typically used for the more advanced.

Have this in mind, when you attack problems with
ML - and like any other project or analysis, it is
typically good to get a “rough result” fast, and then
to refine it from there.

o

>

o [ N N N N N-N N-J

Neural Networks ...

......

R )
[}
000
I 00O
(o]
[o]
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Method’s (dis-)advantages

Another comparison is done in Elements of Statistical Learning II (ESL II), where linear

methods are not included.

As can be seen,
Neural Networks are
“difficult” in almost
all respects, but
performant.

For trees, the case is
almost the opposite.

However, I don’t agree
with the evaluation

of the predictive power
of trees.

At least not for normal
structured data.

For tabular data, I disagree!

Characteristic Neural] SVM | Trees | MARS | k-NN,
Nets Kernels

Natural handling of data v A 4 A A v

of “mixed” type

Handling of missing values v A 4 A A A

Robustness to outliers in v A 4 A A 4 A

input space

Insensitive to monotone v v A v v

transformations of inputs

Computational scalability v v A A v

(large N)

Ability to deal with irrel- v v A A v

evant inputs

Ability to extract linear A A v v

combinations of features

Interpretability v A 4 * A v

Prodictine-poues ot | ( V A

...and others do too [https:/ /arxiv.org/abs/2110.01889]

From ESL II, Chapter 10.7 90




Loss functions
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What loss function to use?

The choice of loss function depends on the problem at hand, and in particular

what you find important!

In classification:

e Do you care how wrong the wrong are?
e Do you want pure signal or high efficiency?
 Does it matter what type of errors you make?

In regression:

* Do you care about outliers?

* Do you care about size of outliers?
* Is core resolution vital?

Classification

Log Loss

Focal Loss

KL Divergence/
Relative
Entropy

Exponential
Loss

Hinge Loss

Regression

| Mean Square |

Error/

Quadratic Loss

Mean Absolute
Error

Huber Loss/ |

Smooth Mean

Absolute Error

Log cosh Loss

Quantile Loss
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What loss function to use?

The choice of loss function depends on the problem at hand, and in particular
what you find important!

Loss functions for classification _.. _
Classification Regression
5 i o ——
——Hinge Mean Square
45+t ——Logistic Log Loss Error/
4 S Eé?grgﬁélal Quadratic Loss
3.5+ Mean Absolute
Focal Loss ¢
3 rror
2.5¢ /KL Divergence/-\ Huber Loss/
ol Relative Smooth Mean
Entropy Absolute Error
15¢ | | |
1 \ = Expcig;e:tial | Log cosh Loss
0.5F - - )
O C 1 1 1 ] I
3 D -1 0 1 ) 3 I Hinge Loss “— Quantile Loss
Correctness (Ypred * Yirue) With yerue € [-1,1]
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What loss function to use?

The choice of loss function depends on the problem at hand, and in particular
what you find important!

Loss functions for classification

Classification Regression
5. P
——Hinge Mean Square
45+t ——Logistic Log Loss Error/
—— Exponential Quadratic Loss
4 ——Zero-One )
3.5¢ Binary Cross Entropy (aka. Logloss or Logistic Loss):
3 N
1
2.5+ L A A~
L=—— E : [yn log Yn + (1 T yn) 10g(1 T yn)]
ot N
n=1
1.5+
1 \ = Expcig;e:tial | Log cosh Loss
0.5} K
O C 1 1 1 ] I
3 D -1 . 0 ] ) 3 I Hinge Loss “— Quantile Loss
Correctness (Ypred * Yirue) With yuue € [-1,1]




Unbalanced data

If the data is unbalanced, that is if one outcome/target is much more abundant
than the alternative, case has to be taken.

Example: You consider data with 19600 (98%) healthy and 400 (2%) ill patients.

An algorithm always predicting “healthy” would get an accuracy score of 98%)!

|

In this case, using Area Under Curve (AUC) or F1 for | BCE loss:
loss is better. An alternative is “focal loss”, which |

focuses on the lesser represented cases:
Binary Cross Entropy loss: \ /

N
Z Yn 10g G + (1 — yn) log(1 — gn)]
=] Focal loss:

Focal loss:

N
1 A
=R § (1 —a)y)logyn + (1 —yn)" loga(l — §)]
n=1

/

ﬂ

(0=0.25, y=4) /

95



What loss function to use?

The choice of loss function depends on the problem at hand, and in particular

what you find important!

Loss functions for regression

5 _
——Squared
4.5 —— Absolute
——L0g-Cosh
4+ ——Huber ?5:5;
——Huber (6=1
3.5
3
2.5
2 L
1.5+
1 L
05| \/
O L
2

-3 2
EI'I'OI' (Ypred Ytrue)

Discussion of regression loss functions

Classification

Log Loss

Focal Loss

KL Divergence/

Relative
Entropy

Exponential
Loss

Hinge Loss

Regression

Mean Square |

Error/

Quadratic Loss

Mean Absolute
Error

Huber Loss/ |

Smooth Mean

Absolute Error

Log cosh Loss

Quantile Loss
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https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0

What loss function to use?

The choice of loss function depends on the problem at hand, and in particular

what you find important!

Loss functions for regression

——Squared
—— Absolute
Log-Cosh
—Huber §6=5§
——Huber

0=1

-3 -2 -1 0 1
Error (Ypred - Ytrue)

Discussion of regression loss functions

Squared Loss:

e Most popular regression loss function

e Estimates Mean Label

e ADVANTAGE: Differentiable everywhere
e DISADVANTAGE: Sensitive to outliers

Absolute Loss:
e Also a very popular loss function
e Estimates Median Label
e ADVANTAGE: Less sensitive to noise

e DISADVANTAGE: Not differentiable at O

Huber Loss:

e ADVANTAGE: "Best of Both Worlds"
of Squared and Absolute Loss.

e DISADVANTAGE: Only once-differentiable

LogCosh Loss:

e ADVANTAGE: "Best of Both Worlds"
of Squared and Absolute Loss.

e ADVANTAGE: Similar to Huber Loss,
but twice differentiable everywhere.
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https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0

What loss function to use?

The choice of loss function depends on the problem at hand, and in particular

what you find important!

In classification:

e Do you care how wrong the wrong are?
e Do you want pure signal or high efficiency?
 Does it matter what type of errors you make?

In regression:

* Do you care about outliers?

* Do you care about size of outliers?
* Is core resolution vital?

Ultimately, the loss function should be
tailored to match the wishes of the user.
This is however not always that simple,
as this might be hard to even know!

Log Loss

Focal Loss

KL Divergence/
Relative
Entropy

Exponential
Loss

Hinge Loss

Classification

| Mean Square |

Error/
Quadratic Loss

Mean Absolute
Error

Huber Loss/ |
Smooth Mean
Absolute Error

Log cosh Loss

Quantile Loss
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XGBoost algorithm

In order to “punish” complexity, the cost-function has a regularised term also:

L(¢) = Z L@, 95) + ) QUSx)

where Q(f) = vT + %)\Hw”z

Table 1: Comparison of major tree boosting systems.

System exact approximate | approximate out-of-core sparsity parallel
greedy | global local aware

XGBoost yes yes yes yes yes yes
pGBRT no no yes no no yes
Spark MLLib | no yes no no partially yes
H20 no yes no no partially yes
scikit-learn yes no no no no no

R GBM yes no no no partially no
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XGBoost algorithm

In order to “punish” complexity, the cost-function has a regularised term also:

L(¢) = Z L@, 95) + ) QUSx)

where Q(f) = 7T + %)\||w|\2

Table 1: Comparison of major tree boosting systems.

exact

approximate

approximate

sparsity

System greedy | global local out-of-core ware parallel
XGBoc . . .

oGcerr| Generally, all constraints or priors should be included
IS{I;aOrk M into the model through additions to the loss function.
scikit-learn yes ;10 no no ;10 ] ;10

R GBM yes no no no partially no
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Train, Validation & Test
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Test for simple over-training

In order to test for overtraining, half the sample is used for training, the other for testing:

TMVA overtraining check for classifier: BDT_0pOm_2e2mu

-é 3.5 f-ISig'na'I (t('est Eallnplle) L S‘gn'al (irai'nin'g s'am'ple') o
% /| Background (test sample) » Background (training sample)
E 3 —Kolmogorov-Smirnov test: signal (background) probabili 0.137 ( 0.87) —]
< r =
25 =

C 42

= - o

2 —s

- Je

— H4<

1.5 — =

- 1=

L e

- Ja

11— —1<

£ ul)

0.5 =

2 F 13

- 1%

C 19

0 H S

06  -04 0.2 0 0.2 0.4
BDT_OpOm_2e2mu response 102



Test for simple over-training

In order to test for overtraining, half the sample is used for training, the other for testing:

TMVA overtraining check for classifier: BDT_0pOm_2e2mu

B Signal (Gstbample) T

fad

T 35
=

= 3
&
=

2.5

2

1.5

1

0.5

« Signal (training sample) '

" { Background (test sample) * Background (training sample)

—Kolmogorov-Smirnov test: signal (background) probability;= 0.137 ( 0.87)

L =

However, “weak” over-training in itself is not a
“sin”, as long as one is aware that the performance
in a new dataset will follow that of the test sample,

NOT the training sample.

!A.||||||||

e L e - e Ay o s s A s

0. 0.4 0.2 0 02 04
BDT_OpOm_2e2mu response

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%
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Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

04

03

undertraining

0.2

score

Performance of the classifier

0.1

some over training

\ optimal

\ MMWWWWV‘-«NM

\

Some overtraining is good!

clear over training

— Training error
— CVerror

_01|

100
max_leaf_nodes

150

Complexity of the classifier
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Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

04

03

undertraining

0.2

score

Performance of the classifier

0.1

o1l

\

Some overtraining is good!

some over training

optimal

— Training error
— CVerror

Why does the red
curve reach zero?

clear over training

100 150
maxleatnodes Complexity of the classifier
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Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

— Training error
S — CV error
=
% 041 undertraining
o
O
s Why does the red
= ..
2 Some over training curve reach zero?
= optimal
qg \
Q
& \
01 .
\\\ °®
V\\\ > > >

Some overtraining is good!

Ty Iy Zg

From: Ian Goodfellow et al: “Deep Learning” I

<0 100 150
maxleatnodes Complexity of the classifier
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https://www.deeplearningbook.org/contents/ml.html

Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

041 undertraining

03

optimal
0.2

score

Performance of the classifier

0.1

Some overtraining is good!

some over training

MW

— Training error
— CVerror

So how can we know, when to stop

~| increasing the complexity of our

algorithm?
(i.e. including more trees for BDTs)

I
100 150
maxleatnodes Complexity of the classifier
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Dividing Data
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How to “use” your data?

If you train you algorithm on all data, you will not recognise overtrain, nor what
the expected performance on new data will be. Thus we divide the data into:

Train Dataset
* Set of data used for learning (by the model), that is, to fit the parameters to
the machine learning model using stochastic gradient descent.
Valid Dataset
* Set of data used to provide an unbiased evaluation of intermediate models
fitted on the training dataset while tuning model parameters and
hyperparameters, and also for selecting input features.
Test Dataset
* Set of data used to provide an unbiased evaluation of a final model fitted
on the training dataset.

Train Valid Test



How to do the division?

You can of course do this yourself with your own code, but there are specially
prepared functions for the task:

Scikit-Learn method:

from sklearn.model_selection import train_test_split

X_train, X_rem, y_train, y_rem = train_test_split(X, y, train_size=0.8)

X_valid, X_test, y_valid, y_test = train_test_split(X_rem, y_rem, test_size=0.5)

Fast ML method:

from fast_ml.model_development import train_valid_test_split

X_train, y_train, X_valid, y_valid, X_test, y_test =

train_valid_test_split(df, target = *?, train_size=0.8, valid_size=0.1, test_size=0.1)

There are a few important things to remember:

e Always do the data cleaning, selecting, weighting, etc. before splitting!
e If there is “more than enough” data, then use less than the total.

o If there is “a little too little” data, then use cross validation (next).

11C



k-fold Cross Validation

In case your data set is not that large (and perhaps anyhow), one can train on
most of it, and then test on the remaining 1/k fraction.

This is then repeated for each fold... CPU-intensive, but easily parallelisable and
smart especially for small data samples.

)
)
)

Dataset
Fold1 Fold2 Fold3 Fold4 Foldd ~ Fold k

Split the dataset into k randomly sampled independent subsets (folds).
Train classifier with k-1 folds and test with remaining fold.
Repeat k times.
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Getting an uncertainty estimate

The k-fold cross validation (CV) does not only allow you to train on almost all

(1-(1/k)) and test on all the data, but also has a two additional advantages:

e If you consider the performance (“Error” below) on each fold, then you can
also calculate the uncertainty on the performance.

e Since you can test on all data, the uncertainty on the loss estimate goes down.

Training Sets Test Set
A I
Iteration 1 Ly Errory
Iteration 2 —» ETTor,
| 1%
Iteration 3 —» Error; |__ Error = gz Error;
i=1
Iteration 4 » Error,
Iteration 5 L » Errors
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Why use CV?

The k-fold cross validation (CV) allows you to get a better error estimate and
knowledge of the uncertainty.

Imagine that you train N different models (different type, HPs, training, etc.),
and that you get results as shown:

You conclude that model #2 is best.
However, you don’t know, that the

uncertainties are rather large, because
your test sample (20%) is small! n | il
H

Loss >

Then you do 5-fold CV... and get
a more accurate evaluation with
smaller uncertainties (by factor

1/sqrt(5)).

Now you conclude, that model #1 is : Mgdel #

the best... and that model #2 is worst! 1 2 3 N
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Why use CV?

The k-fold cross validation (CV) allows you to get a better error estimate and
knowledge of the uncertainty.

Imagine that you train N different models (different type, HPs, training, etc.),
and that you get results as shown:

Note that Cross Validation especially applies mostly to
You conclud three cases:

However, y{ ® When there is little (test) data.

uncertaintie ® When you want uncertainty on performance.

your test sal ® When accurate performance measure is wanted, N
e.g. to find the very best model.
Then you d«
a more accu| At very high statistics, Cross Validation is less relevant.

smaller uncertainties (by factor
1/sqrt(5)).
Now you conclude, that model #1 is | | : : Mgdel #

the best... and that model #2 is worst! 1 2 3 N
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CV for time series

Special care has to be taken, when doing Cross Validation for time series, as one
should ensure that training is done only on data from the past, not the future!

The figure below illustrates the principle. One should choose a certain data
period, and put the test period immediately after, and then shift this setup.

Data
Train Test ]
Train Test ]

Train Test ]

'
'

Train Test
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Preprocessing Data
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When data is imperfect

So far, we have looked at “perfect” data, i.e. data without any flaws in it.
However, real world datasets are hardly ever “perfect”, but contains flaws that
makes preprocessing imperative.

Effects may be (non-exhaustive list):

e NaN-values and "Non-values" (i.e. -9999)

Wild outliers (i.e. values far outside the typical range)

Shifts in distributions (i.e. part of data having a different mean/width/etc.)
Mixture of types (i.e. numerical and text, from something humans filled out)

It is also important to consider, if entries are missing...
1. Randomly (in which case there should be no bias from omitting) or
2. Following some pattern (in which case there could be problems!).

In case of NaN values, we might simply decide to drop the variable column or
entry row, requiring that all variables/entries have reasonable values.

Alternatively, we might insert “imputed” values instead, saving statistics.
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NaN-values tend to correlate

It is often seen, that several variables have the same source, and thus their NaN

occurrence might be correlated with each other.

This can be tested by substituting 0’s for numerical values and 1’s for NaN

values. By considering the correlation matrix of these substitute 0/1 values, one

gets a pretty clear picture.

Typically, some entries are 100%
correlated, as the source of these
variables is shared.

Based on this information, one can
better decide how to deal with these
variables.

NPT~ O P2 LN ~N o
et O~~~ NN~ O

| | | | |
X X X X X X X X X X X X X

x 2(]

3 x_2

1 072077 077
0.57 0.54 0.57 057 0.72 1 092088
0.63 064059 06 077092 1 097

06 0.6 059058077 088 097 1

s

]

OO~ |
>

N
NN
x X

x 11
x 14

x X X

057 1 079 0.3 DAB0SE

janad | =
...}07’ 1 0!2..01

N
x

x 21
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How to deal with outliers?

Sometimes, (a few?) entries take on extreme values, which ruin either the NN
performance, or the transformation applied first (and then the performance).
How to deal with that?

Of). —
Make (very loose) truncations...

(M. -
P
D
=
[}
a

© T T T

5 0 5 10
lognlevel
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How to deal with outliers?

Sometimes, (a few?) entries take on extreme values, which ruin either the NN
performance, or the transformation applied first (and then the performance).
How to deal with that?

Of). —
Make (very loose) truncations...

QU
=
@ However... don’t do so until you suspect it
A to be causing problems. Even extreme values

] are often “tamed” in BDTs or by sigmoids.

© - | T T

-5 0 5 10
lognlevel
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Conclusions

No matter what you plan to do with data, my first advice is always:

Print & Plot

This is your first assurance, that you even remotely know what the data
contains, and your first guard against nasty surprises.

Also, working with others (from know-nothings to domain experts) you will be
required to show the input, and assuring that it is valid and makes sense.

Remember to do so in all your ML work...
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Feature Ranking
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ML as a science

While Machine Learning is fantastic, it is a black box, and thus unsatisfactory
both regarding understanding it, and as a science in itself.

"As a data scientist, I can predict what is likely to happen, but I cannot explain why it
is going to happen. I can predict when someone is likely to attrite, or respond to a
promotion, or commit fraud, or pick the pink button over the blue button, but I cannot
tell you why that’s going to happen. And I believe that the inability to explain why

something is going to happen is why I struggle to call "data science’ a science.”
[Bill Schmarzo, Author of "Big Data: Understanding How Data Powers Big Business”]

However, there are ways of “opening the box”, and the most common one is to
find out, which input features are important and which are not.

For more info, see:
Interpretable Machine Learning

A Guide for Making Black Box Models Explainable.

Christoph Molnar


https://christophm.github.io/interpretable-ml-book/index.html

Input Feature Ranking

It is of course useful to know, which of your input
features/variables are useful, and which are not.
Thus a ranking of the features is desired.

This is not only possible, but actually a general nice
feature of ML and feature ranking:
It works as an automation of the detective work
behind finding relations.

In principle, one could obtain a variables ranking by
testing all combinations of variables. But that is not
feasible in most situation (N features > 5-7)...

Most algorithms have a build-in input feature
ranking, which is based on various approximations.

A very simple idea (next slide) that works quite well is
“permutation importance”.




Input Feature Ranking

There are many different ways of ranking input
features. Three (simple) implementations into
XGBoost are:

e Weight. The number of times a feature is used to
split the data across all trees.

e Cover. The number of times a feature is used to split
the data across all trees weighted by the number of
training data points that go through those splits.

e Gain. The average training loss reduction gained
when using a feature for splitting.

These have different pro’s and con’s.

Personally, I much like the idea of...
“permutation invariance”




Permutation Importance



Permutation Importance

One of the most used methods is “permutation importance” (below quoting
Christoph M.: "Interpretable ML" chapter 5.5). The idea is really simple:

We measure the importance of a feature by calculating the increase in the

model’s loss function after permuting the feature.

e A feature is “important” if shuffling its values increases the model error,
because in this case the model relied on the feature for the prediction.

e A feature is “unimportant” if shuffling its values leaves the model error
unchanged, because the model thus ignored the feature for the prediction.


https://christophm.github.io/interpretable-ml-book/feature-importance.html

Permutation Importance

One of the most used methods is “permutation importance” (below quoting
Christoph M.: "Interpretable ML" chapter 5.5). The idea is really simple:

We measure the importance of a feature by calculating the increase in the

model’s loss function after permuting the feature.

e A feature is “important” if shuffling its values increases the model error,
because in this case the model relied on the feature for the prediction.

e A feature is “unimportant” if shuffling its values leaves the model error
unchanged, because the model thus ignored the feature for the prediction.

Height at age 20 (cm) Height at age 10 (cm) Socks owned at age 10
182 155 . 20
175 147 - 10
156 142 . 8

153 130 24


https://christophm.github.io/interpretable-ml-book/feature-importance.html

Permutation Importance

Input: Trained model f, feature matrix X, target vector y, loss function L(y,f).
[Fisher, Rudin, and Dominici (2018)]

e Estimate the original model error eqig = L(y, f(X))
e For each featurej=1,...,p do:
— Generate feature matrix Xpermj by permuting feature j in the data X.
This breaks the association between feature j and true outcome y.
— Estimate error eperm;j = L(Y,f(Xpermj)) based on the predictions of Xperm,j.

— Calculate permutation feature importance Fli= €perm,j/ €orig (OT €permj - €orig)-
* Sort features by descending FI;.

X_A X_B X_C Y
xai xb1 xc1 y1
xa2 " xb2 xc2 y2
xal3 xb3 | xc3 y3
xa4 L xb4 xc4 v4
xab xb5 xch y5
xab xb6 xch y6

Note: Permutation Importance calculations are computationally fast. (why?)

Feature importance with Neural Networks (Towards Data Science)



https://towardsdatascience.com/feature-importance-with-neural-network-346eb6205743

SHAP Values



SHAP Values

SHAP is a technique for deconstructing a machine learning model's
predictions into a sum of contributions from each of its input variables.

The result is an evaluation of the input variables for each single case!



Shapley values

Shapley values is a concept from corporative game theory, where they are
used to provide a possible answer to the question:
“How important is each player to the overall cooperation,
and what payoff can each player reasonably expect?”

The Shapley values are considered “fair”, as they are the only distribution
with the following properties:
e Efficiency: Sum of Shapley values of all agents equals value of grand coalition.

® Linearity: If two coalition games described by v and w are combined, then the
distributed gains should correspond to the gains derived from the sum of v and w.

* Null player: The Shapley value of a null player is zero.
* Stand alone test: If v is sub/super additive, then ©i(v) < /> v({i}), where ¢ is

the Shapley value for agent i, and v is the worth function (of a coalition). Also called
“Monotonicity”: A consistently more contributing feature much a get higher v.

* Anonymity: Labelling of agents doesn't play a role in assignment of their gains.

* Marginalism: Function uses only marginal contributions of player i as arguments.

From such values, one can determine which variables contribute to a final result. And
summing the values, one can get an overall idea of which variables are important.



Shapley value calculation

Consider a set N (of n players) and a (characteristic or worth) function v that
maps any subset of players to real numbers:

e R il =4

If S is a coalition of players, then v(S) yields the total expected sum of payoffs
the members of S can obtain by cooperation.

The Shapley values are calculated as:

)= Y PR EIE D 50 i)~ w(s)

SCN\{i}

To formula can be understood, of we imagine a coalition being formed one
actor at a time, with each actor demanding their contribution v(S U {i}) — v(S)
as a fair compensation, and then for each actor take the average of this
contribution over the possible different permutations in which the coalition
can be formed.



Shapley value calculation

Consider a set N (of n players) and a (characteristic or worth) function v that
maps any subset of players to real numbers:

e R il =4

If S is a coalition of players, then v(S) yields the total expected sum of payoffs
the members of S can obtain by cooperation.

The Shapley values can also be calculated as:
1 .
pi(v) = — > P u{i}) —o(P)]
" R

where the sum ranges over all n! orders R of the players and PR is the set of
players in N which precede i in the order R. This has the interpretation:

1 marginal contribution of ¢ to coalition C

pi(v) = NplayeI‘S e number of coalitions excluding ¢ of this size



Shapley value calculation example

Example 1:

Two friends (F1 and F2) make a business: Payoff 600$ (i.e. v(F1,F2) = 600).
If F1 or F2 did not participate, payoff would be 0% (i.e. v(F1) = v(F2) = 0).
Result: F1 and F2 each gets 300%.

Example 2:
Two friends (F1 and F2) make a business: Payoff 600$ (i.e. v(F1,F2) = 600).
If F1 did not participate, payoff would be 0% (i.e. v(F1) = 0).
If F2 did not participate, payoff would be 200% (i.e. v(F2) = 200).
Cases:
F1 1st gets 0$. With F2 also they get 600$. F2’s marginal contribution: 600$.
F2 1st gets 200$. With F1 also they get 600$. F1’s marginal contribution: 400$.
Result:
F1 should have: 0.5x 0% + 0.5 x400% =200%
F2 should have: 0.5 x 200$ + 0.5 x 600% = 400%

Note that the number of cases quickly expands!



SHAP Values

A great approximation was developed by Scott Lundberg with SHAP values:

SHAP (SHapley Additive exPlanations):
https:/ / github.com /slundberg/shap

This algorithm provides - for each entry - a ranking of the input variables, i.e.
a sort of explanation for the result.

One can also sum of the SHAP values over all entries, and then get the overall
ranking of feature variables. They are based on Shapley values.

Note: SHAP values are computationally “heavy”.
Note2: Lately, this seems to have been improved in 2023!


https://github.com/slundberg/shap

Input Feature Ranking

Here is an example from SHAP’s github site.

Clearly, LSTAT and RM are the best variables (whatever they are!).

shap.summary_plot(shap_values, X, plot_type="bar")

Lstat |
rv

ois [N
pTRATIO |
sl
TAX ]
AGE |
INDUS |
RAD |
ZN
CHAS

0.0 0.5 1.0 1.5 2.0 2.5
mean(|SHAP value|) (average impact on model output magnitude)



https://github.com/slundberg/shap

Individuel estimates

Shapley-values also gives the possibility to see the reason behind individuel
estimates. Below is an example, illustrating this point.

SHAP plot for #489266
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Above is shown which factors that influences the final estimate of the sales price
(and how much). The estimate is the sum of the contributions (here 6.86 MKz.).

This is a fantastic tool to get insight into the ML workings!!! 128



Example of usage



Input Feature Ranking

Here is an example from particle physics. The blue variables were “known”,
but with SHAP we discovered three new quite good variables in data.

p_Rhad

p_Reta

p_Rhadl

p_nTracks
p_deltaEtal
p_core57cellsEnergyCorrection
p_Eratio

p_Rphi
p_deltaPhiRescaled2
p_E7x11_Lr3
p_TRTPID

p_EptRatio

p_weta2

p_et_calo

p_dPOverP

p_wtotsl

p_E3x5 Lrl
p_E3x5_Lr0

p_E7x11 _Lr2
p_fracsl

p_eta

p_pt_track
p_deltaEta2
NvtxReco
p_ambiguityType
p_flcore
p_numberOfinnermostPixelHits
p_f3

p_deltaEta0

p_fl

p_dO0Sig

p_do
averagelnteractionsPerCrossing
p_numberOfPixelHits

p_numberOfSCTHits 1
0.0

LightGBM Model SHAP Value Rankings

LH PDF variables
+Binning vars
+Selection vars
+Extra vars
+Abundant vars

2.5




Input Feature Ranking

We could of course just add all variables, but want to stay simple, and
training the models, we see that the three extra variables gives most of gain.

Electron ROC Curve Trained in Data

1071

FPR (Background Efficiency)

10—3 1

Reference Likelihood (LH) (AUC = 0.99711)
LightGBM (LH PDF varibles) (AUC = 0.99838)
LightGBM (LH +Binning vars) (AUC = 0.99879)
LightGBM (LH +Selection vars) (AUC = 0.99897)
LightGBM (LH +Extra vars) (AUC = 0.99915)
LightGBM (LH +Abundant vars) (AUC = 0.99923)

1.000

0.800

0.825

0.850

0.875

0.900
TPR (Signal Efficiency)

0.925

0.950

0.975




Unsupervised Learning;:
Clustering
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Evaluating clustering

Evaluation of identified clusters is subjective and may require a domain

expert, although many clustering-specific quantitative measures do exist.

Typically, clustering algorithms are compared on synthetic datasets with pre-

defined clusters, which an algorithm is expected to discover.

“Clustering is an unsupervised learning technique, so it is hard

to evaluate the quality of the output of any given method.”
[Page 534, Machine Learning: A Probabilistic Perspective, 2012.]

(a)

One of the simple principles is that
of the “Elbow Method”.

80 -

If the loss function shows an “elbow” 60 -

SSE

(sudden stop in rate of improvement),
then that probably reflects some
structure in the data. .

Elbow point

SSE

80 -

60

40

20 1

(b)

lllllllll


https://amzn.to/2TwpXuC

Evaluating clustering

Evaluation of identified clusters is subjective and may require a domain

expert, although many clustering-specific quantitative measures do exist.

Typically, clustering algorithms are compared on synthetic datasets with pre-

defined clusters, which an algorithm is expected to discover.

One way of visually evaluating a clustering algorithm
is to combine it with a dimensionality reduction,
though one then observes the combined performance of the two.

(a)

One of the simple principles is that
of the “Elbow Method”.

80 A

If the loss function shows an “elbow” 60 -

SSE

(sudden stop in rate of improvement),
then that probably reflects some
structure in the data. 201

Elbow point

SSE

80 -

60

40

20 1

(b)
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Clustering algorithms

Clustering is an “old field” and many philosophies (and algorithms) have been

developed. They can roughly be reduced to two approaches:

e Hierarchical clustering algorithms are based on recursively either merging
smaller clusters in to larger ones or dividing larger clusters to smaller ones.

e Partitioning clustering algorithms generate various partitions and then
iteratively place each instance best in one of k mutually exclusive clusters.

Hierarchical clustering does not require any input parameters, while
partitioning clustering algorithms require the number of clusters to start
running. Hierarchical clustering returns a much more meaningful and
subjective division of clusters but partitioning clustering results in exactly k
clusters.

: : Divisive Single-linkage, Complete-
Hierarchical ot 0% LS
: linkage, Average-linkage,
clustering

. Centroid-linkage, Ward-linkage
Agglomerative

Clustering
algorithms | - K-Means, K-Medoids,
€ Center-based K-Centers, APM
Partitioning Sanilistiaied Neighbor-based, DBSCAN,
clustering s Density-peaks, Robust-DB

Spectral-based —— PCCA, PCCA+
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Hierarchical clustering algorithms

Hierarchical clustering algorithms can be further divided:
o Agglomerative: Merge smaller clusters into larger ones
e Divisive: Divide larger clusters into smaller ones.

The only requirement is a similarity measure to decide distance between cases.

Agglomerative Divisive

LAt e
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Partitioning clustering algorithms

Partitioning clustering algorithms can (also) be further divided:

¢ Center-based: Build clusters around (random?) centers (k-Means).

e Density-based: Build clusters around (high) densities (DBSCAN).

* Spectral-based: Uses eigenvalues of the similarity matrix to perform
dimensionality reduction before clustering (PCCA+).

“k-Means clustering is the “go-to” clustering algorithm. You should see it as a
basic recipe from which many algorithms can be concocted.”

[David Forsyth, “Applied ML” chapter 8.2.6]

Clustering
algorithms

Hierarchical
clustering

Partitioning
clustering

Single-linkage, Complete-
linkage, Average-linkage,
Centroid-linkage, Ward-linkage

< Divisive
Agglomerative

Center-based K-Means, K-Medoids,

K-Centers, APM

Neighbor-based, DBSCAN,

Density-based Density-peaks, Robust-DB

Spectral-based —— PCCA, PCCA+
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k-Means clustering

The recipe is to iterate the below points, until movements are “small”:
e Allocate each data point to the closest cluster center
e Re-estimate cluster centers from their data points.

Demonstration of the standard algorithm

® (@)
] o [
8 - 0 o
°o o O y
B O © ®
m] m o (]
oo o ]
oo
1. kinitial "means" (in this 2. k clusters are created by 3. The centroid of each of the 4. Steps 2 and 3 are repeated
case k=3) are randomly associating every observation  k clusters becomes the new until convergence has been
generated within the data with the nearest mean. The mean. reached.
domain (shown in color). partitions here represent the
Voronoi diagram generated by
the means.

There are many variations, improvements, etc. that refines this algorithm.
Most notably are the k-means++ (better initial points) and k-mediods methods.
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k-Means clustering

The recipe:

¢ Allocate each data
point to the closest
cluster center

e Re-estimate cluster
centers from their
data points.

X2

Iteration number 1
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DBSCAN algorithm

DBSCAN classifies points as core points, reachable points and outliers:

e A point p is a core point if at least minPts points are within distance ¢ of it.

e A point q is directly reachable from p if point q is within distance & from
core point p. Points are only said to be directly reachable from core points.

e A point q is reachable from p if there is a path pj, ..., pn with p1 = p and
Pn = q, Where each pj:1 is directly reachable from p;. Note that this implies
that the initial point and all points on the path must be core points, with the
possible exception of g.

e All points not reachable from any other point are outliers or noise points.

DBSCAN has two parameters: minPts and e.

If p is a core point, then it forms a cluster
together with all points (core or non-core) that
are reachable from it. Each cluster contains at

least one core point; non-core points can be
part of a cluster, but they form its “edge",
since they cannot be used to reach more points.
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DBSCAN algorithm

As can be seen, DBSCAN is a rather generic algorithm, capable of handling a
large variety of data.

epsilon =1.00
minPoints = 4

Restart
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Clustering algorithms in scikit-learn

Scikit-Learn has a rather good selection of clustering algorithms:

Method name

K-Means

Affinity
propagation

Mean-shift

Spectral
clustering

Ward hierarchical
clustering

Agglomerative
clustering

DBSCAN

OPTICS

Gaussian
mixtures

BIRCH

Parameters

number of clusters

damping, sample
preference

bandwidth

number of clusters

number of clusters
or distance
threshold

number of clusters
or distance
threshold, linkage
type, distance

neighborhood size

minimum cluster
membership

many

branching factor,
threshold, optional
global clusterer.

Scalability

Very large n_samples,
medium n_clusters
with

MiniBatch code

Not scalable with
n_samples

Not scalable with
n_samples

Medium n_samples,
small n_clusters

Large n_samples and
n_clusters

Large n_samples and
n_clusters

Very large n_samples,
medium n_clusters

Very large n_samples,
large n_clusters

Not scalable

Large n_clusters and
n_samples

Usecase

General-purpose, even cluster
size, flat geometry, _ .
not too many clusters, inductive

Many clusters, uneven cluster
size, non-flat geometry,
inductive

Many clusters, uneven cluster
size, non-flat geometry,
inductive

Few clusters, even cluster size,
non-flat geometry, transductive

Many clusters, possibly connec-
tivity constraints, transductive

Many clusters, possibly connec-
tivity constraints, non Euclidean
distances, transductive

Non-flat geometry, uneven clus-
ter sizes, outlier removal,
transductive

Non-flat geometry, uneven clus-
ter sizes, variable cluster density,
outlier removal, transductive

Flat geometry, good for density
estimation, inductive

Large dataset, outlier removal,
data reduction, inductive

Geometry (metric used)

Distances between points

Graph distance (e.g. near-
est-neighbor graph)

Distances between points

Graph distance (e.g. near-
est-neighbor graph)

Distances between points

Any pairwise distance

Distances between near-
est points

Distances between points

Mahalanobis distances to
centers

Euclidean distance be-
tween points
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Clustering algorithms in scikit-learn

MiniBatch
KMeans

Affinity
Propagation

MeanShift

Spectral
Clustering

Ward

Agglomerative
Clustering

DBSCAN

OPTICS

BIRCH

Gaussian
Mixture

.01s

~4.06s|

.10s

.31s

.06s

.07s

.84s

.01s

A comparison of the clustering algorithms in scikit-learn
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Conclusions

Clustering is an “old” art form, for which there is a vast ocean of methods.

The K-means (and further developments) is the standard algorithm, if there is
one such. DBSCAN is also an old (and awarded!) classic.

Note that like in dimensionality reduction, it is important to transform the
input variables first, so that mean and variances are of order zero and unity.

It is HARD to evaluate the performance, and visual inspection and testing on
similar (typically simulated) cases are some of few methods.
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Example Use Cases
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OK - what is it good for?

Clustering is used for several things:
* Market segmentation:
Dividing costumers or products into similar classes is used in advertising.

e Production quality assurance:
Clustering of images is used for detecting faulty productions automatically.

e DNA analysis:
The ability to cluster very high dimensional data (DNA) to groups/families.

* Medical imaging:
Classification of medical images without labels.

* Image segmentation:
Dividing an image into its parts is used in e.g. self-driving and security.

e Anomaly detection:
Quick detection of e.g. credit card fraud saves large amounts of money.
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Clustering of Danish housing

Show is a simple clustering of the Danish housing market, based on position
(x,y) and price/m2. In this way, one can see developments for each market.

ASMP = 7711(+-48.6%) kr./m"2
o Relative size: 17.0%
Label: 7
ASMP = 7989(+-53.6%) kr./m*2
Relative size: 17.0%
by q Label: 0
ASMP = 10235(+-53.0%) kr./m"2
o Relative size: 16.8%
. Label: 4
[ ASMP = 12427(+-41.0%) kr./m"2
A tade o Relative size: 17.2%
Label: 2
ASMP = 14414(+-43.6%) kr./m"2
Relative size: 9.24%
Label: 5
ASMP = 16086(+-43.8%) kr./m"2
o Relative size: 8.57%
Label: 3
ASMP = 23041(+-40.0%) kr./m”2
Relative size: 7.42%
Label: 1
ASMP = 24989(+-32.7%) kr./m"2
o Relative size: 6.57%
Label: 6
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Unsupervised Learning;:
Dimensionality Reduction
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PCA, t-SNE & UMAP

High dimensionality has always been a curse - it is extremely hard to make
sense of, and requires a lot of work and domain knowledge to boil down to

few dimensions without loosing a lot of information.

PCA has long reigned the linear case, and k-means the clustering, but two
new(er) non-linear and powerful candidates are around: t-SNE and UMAP.

Below are their performance on the MNIST data set.

t-SNE

MNIST Digits Embedded via UMAP

-10 -5 0 5 10

tsne-2d-one

UMAP

Source: Towards data science (PCA and t-SNE)

Source: UMAP GitHub page: https://github.com/Imcinnes/umap
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t-SNE Pro’s and Con’s

Pro: In the words of the t-Distributed stochastic neighbour embedding (t-SNE) paper,
the t-SNE algorithm... “...minimises the divergence between two distributions: a distribution
that measures pairwise similarities of the input objects and a distribution that measures pairwise
similarities of the corresponding low-dimensional points in the embedding” .

The great thing about this is, that there are no assumptions about distributions,
relationships, or number of clusters. The algorithm is non-linear, which gives it a clear
edge over e.g. PCA.

Con: However, computationally it is a “heavy” (ugly?) algorithm, since t-SNE scales
quadratically in the number of objects N. This limits its applicability to data sets with
only a few thousand input objects; beyond that, learning becomes too slow to be
practical (and the memory requirements become too large)”.

In real life, the t-SNE algorithm has especially had its impact in (a)DNA research, where
the number of cases is typically not that large.
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UMAP

UMAP builds on using Riemannian manifolds! Within differential geometry, this
allows the definition of angles, hyper-area, and curvature in high dimensionality.

Abstract

UMAP (Uniform Manifold Approximation and Projection) is a novel
manifold learning technique for dimension reduction. UMAP is constructed
from a theoretical framework based in Riemannian geometry and algebraic
topology. The result is a practical scalable algorithm that is applicable to
real world data. The UMAP algorithm is competitive with t-SNE for visu-
alization quality, and arguably preserves more of the global structure with
superior run time performance. Furthermore, UMAP has no computational
restrictions on embedding dimension, making it viable as a general purpose
dimension reduction technique for machine learning.

UMAP paper, arXiv 1802.03426, Sep. 2020

The paper is quiet mathematical with (10) definitions, lemmas, and proofs in the
appendix. I find it a bit hard to read, but like their discussion of scaling and cons.
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UMAP

As in the t-SNE case, UMAP tries to find a metric in both the original (large) space X,
and the lower dimension output space Y, which can be (topologically) matched:

At a high level, UMAP uses local manifold approximations and patches
together their local fuzzy simplicial set representations to construct a topo-
logical representation of the high dimensional data. Given some low dimen-
sional representation of the data, a similar process can be used to construct
an equivalent topological representation. UMAP then optimizes the layout
of the data representation in the low dimensional space, to minimize the
cross-entropy between the two topological representations.

UMAP paper, arXiv 1802.03426, Sep. 2020

However, the metrics in X and Y used by UMAP and t-SNE differ:

For t-SNE these metrics are as follows:

~1
2 2
vj = exp(—llai — 313 /203 wig = (14w — w3)
For UMAP they are:
v;i = exp|(—d (zi, z;) — pi)/0i] Wi = (1 +a|y; — yj||gb)_
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Example use cases...
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Differentiating cells

UMAP of different cell types.
The labelling comes from
known cells, but might be
based on very little data.

The unsupervised clustering
gives a quite clear pattern,
and ability to determine cell
type without having a large
training sample.

pes

From: Developmental Alcohol Exposure in Drosophila: Effects on Adult Phenotypes and Gene Expression in the Brain

15 - Astrocytes
type 2 (C24)
Cells of
As ellipsoid and
trocytes fan shaped
Developmental type 1(C23) body (C28) Optic lobe
10 cluster (C39) Gia Cells of neurons Optic lobe
1 ) . 2(C7 neurons
Surface glia (C5) f do'r‘sal o C19 wpe2(Cn type 3 (C18)
and fat body an shaped
(C33) Optic lobe
and antennal
neurons (C11)
Eye and
5| outicle cells Olfactory
(C15) projection
= X % neurons (C10)
Glutamatergic
neurons type 2 Dopaminergic
(C4) neurons (C36)
Glutamatergic )
~ neurons type 3 Optic lobe
a 0] (1 neurons
type 1(C0)
g A
5 N Central brain
Photoreceptor cholinergic
cells (C29) neurons (C17)
Tachykinin/
5 neuropeptidergic : \ Neuropeptk'iesl
7 7. neurons (C42) 3 9 cholinergic e
G neurons 1
Glutamatergic ¢ e 1459)
“ X "°U'°'<‘:52‘Yp° 1 Neuropeptides/
. i (€2 cholinergic
GABAergic Central brain neurons type 2 (C38)
(cs g;u(r;r;s c16 glutamatergic Serotoninergic/
» @3, ' neurons (C20 i X .
-10 €21, €26, C30) (C20) ngﬁ:“’a' ':":‘e';l dopaminergic
Opepuad neurons (C1)
cholinergic
Cells of neurons (C3)
mushroom
and ellipsoid
bodies (C35)
15 Kenyon cells g
T type 2 (C25) Kenyon cells
type 1(C12)
-10 -5 0 5 10
UMAP 1
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Mapping news group discussions

UMAP showing the
differences between different
news group discussion fora.

alt.atheism

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware

The ability to cluster fairly K comp.windows.x
well would allow editors to * misc.forsale

rec.autos
direct text to the relevant % rec.motorcycles

- rec.sport.baseball
news group. 4 g rec.sport.hockey
sci.crypt
sci.electronics
sci.med
sci.space
soc.religion.christian
talk.politics.guns
talk.politics.mideast
talk.politics.misc
talk.religion.misc

‘/

UMAP: metric=hellinger, n_neighbors=15, min_dist=0.1
From: Vec2GC -- A Graph Based Clustering Method for Text Representations 167
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Summary

The main ingredients in ML are:
e Solutions exists (Universal Approximation Theorems)
¢ Solutions can be found (Stochastic Gradient Descent)
e Algorithms that are implemented:
- Boosted Decision Trees
- Neuralt Networks
e Knowledge about how to tell them what to learn (Loss function)
e A scheme for how to use the data (Splitting/Cross Validation)

When applying ML to HEP data, there are several challenges:
e Data and MC do not follow the same distributions!!!

- Sometimes it is clear: Spells disaster

- But when it is not clear, then the impact is unknown.

- Therefore, always think in terms of control channels.
* Loss functions are important

- They are your way of telling the algorithm what to do (i.e. optimise for).

e Training is great, but stopping when it is done is also important.
* Good control of dividing dataset is important

- Use Cross Validation (CV) when there is little data or errors are needed.

e Print and plot your data as the first thing!
* Work hard on getting MC to match data.



Bonus slides
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Coding examples



Example analysis

I've produced a HEP example of classification based on the Aleph data from
LEP times (with BDTs and NNs applied).
It runs out of the box, and you are welcome to copy it for your own use :-)
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