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Transformers

Set-to-set mapping

• A transformer takes in a set and returns a set.

• Classification/regression: vector or scalar

• Add trainable latent space

• Return that point at the end

• Class token

Vision transformer

https://arxiv.org/abs/2010.11929
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Transformers

Set-to-set mapping

• A transformer takes in a set and returns a set.

• Classification/regression: vector or scalar

• Add trainable latent space

• Return that point at the end

• Class token

Going deeper with transformers

https://arxiv.org/pdf/2103.17239


Set-to-set mapping

• Full self attention also create a lot of junk

• Where to send the junk?
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Transformers



Set-to-set mapping

• Full self attention also create a lot of junk

• Where to send the junk?

• Garbage collectors
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Transformers
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Transformers

Set-to-set mapping

• Full self attention also create a lot of junk

• Where to send the junk?

• Adding trainable token that will be discarded afterwards



Foundation models

Malte Algren
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How to make pretraining sound sexy
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Zoo of foundation models

Google trends on “Foundation model” since 2020:

• Word2vec & GloVe (2013)

• GPT (2018)

• BERT/BEiT (2018)

• DALL-E (2021)

 A Survey on Self-supervised Learning (2023)

https://arxiv.org/pdf/2301.05712
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Notation and definitions

Need to define some notation and language for foundation models

1. Backbone (encoder)

• g 𝑥 = 𝑧 =⇒ 𝑓 𝑧 = 𝑦′

2. Latent representation

• Representation: 𝑧

3. Learning objective

• Supervised: ℒ(𝑓 𝑧 , 𝑦)

• Self-supervised: ℒ(𝑓 𝑧 , 𝑥)
(V)AE (1990s)
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Notation and definitions

Need to define some notation and language for foundation models

1. Backbone (encoder)

• g 𝑥 = 𝑧 =⇒ 𝑓 𝑧 = 𝑦′

2. Latent representation

• Representation: 𝑧

3. Learning objective

• Supervised: ℒ(𝑓 𝑧 , 𝑦)

• Self-supervised: ℒ(𝑓 𝑧 , 𝑥)

4. Scale (The world biggest heist)

5. Downstream tasks 𝑇𝑛(𝑧)

Subset of the lawsuits
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Pretraining method

• What does pretrain mean?

• Constructing a pretrain model to solve tasks 𝑇𝑛(𝑧)

• What is the object of a pretrained model?

1. 𝑇(𝑧) ≈ 𝑝 𝑦

2. 𝑇(𝑧) ≈ 𝑝 𝑥

3. 𝑇(𝑧) ≠ 𝑝 𝑥 ∨ 𝑝 𝑦

4. 𝑇(𝑧) ≠≠≠≠≠ 𝑝 𝑥 ∨ 𝑝 𝑦

• Often 𝑇(𝑧) is unknown but assume 𝑇(𝑧) ≈ 𝑝 𝑥
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Pretraining method

• Constructing a pretrain model to solve tasks 𝑇𝑛(𝑧)
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Pretraining method

• Constructing a pretrain model to solve tasks 𝑇𝑛(𝑧)

1. Supervised learning 𝑇(𝑧) ≈ 𝑝 𝑦

• MSE, BCE, CE, etc.

• Multi-task learning with 𝜎

2. Self-supervised 𝑇(𝑧) ≈ 𝑝 𝑥

3. Semi-supervised 𝑇(𝑧) ≈ 𝑝 𝑥, 𝑦

• Joint supervised and self-supervised

A. Final step: Finetuning
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Supervised learning

• If you have an idea about our downstream tasks

• Use x to model y – access to y

• Multiple downstream task that are orthogonal

• Board support in the phase space

• Construct your representation z using 𝑇𝑛(𝑧)

z
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Self-supervised learning

• You don’t have any y. You have access to x

• No specific 𝑇𝑛(𝑧) in mind

• Board support in the phase space

• Always similar encoder/decoder setup

• In physics we have a lot of record data but no labels
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Self-supervised learning

• Constructing a task from samples X

• Augmentations is the name of the game

• 𝐴 𝑥 = 𝑥𝑎 ⇒ argmin
𝜃

ℒ(𝑓 𝑥𝑎 , 𝑥)

1. Masking

2. Cropping/cutout

3. Rotation

4. Other invariances

• Many of them are domain specific
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Self-supervised learning

Generative

1. Masked autoencoder MAE

2. Diffusion MAE

Joint embedding - CLR

1. SimCLR

2. BYOL

3. I-JEPA

Compression or not?

     What do we want?

     Representation learning vs 

       pretraining

• Constructing a task from samples X

• Augmentations is the name of the game

• Masking (general)

• Cropping (image)

https://arxiv.org/pdf/2111.06377
https://arxiv.org/abs/2304.03283
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Self-supervised learning: Generative

Masked autoencoder (wo/ compression)

• Apply masking to input and reconstruct it

• 𝐴 𝑥 = 𝑥𝑖𝑛𝑝𝑢𝑡 , 𝐴
−1 𝑥 = 𝑥𝑡𝑎𝑟𝑔𝑒𝑡

• argmin
𝜃

ℒ(𝑔𝜃(𝑓𝜃 𝑥𝑖𝑛𝑝𝑢𝑡 ), 𝑥𝑡𝑎𝑟𝑔𝑒𝑡)

Masking strategies and amount:

Without Compression

Without Compression
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Self-supervised learning: Generative

Masked autoencoder (wo/ compression)

• Apply masking to input and reconstruct it

• 𝐴 𝑥 = 𝑥𝑖𝑛𝑝𝑢𝑡 , 𝐴
−1 𝑥 = 𝑥𝑡𝑎𝑟𝑔𝑒𝑡

• argmin
𝜃

ℒ(𝑔𝜃(𝑓𝜃 𝑥𝑖𝑛𝑝𝑢𝑡 ), 𝑥𝑡𝑎𝑟𝑔𝑒𝑡)

Do you remember the issue with VAE?

Without Compression
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Self-supervised learning: Generative

Diffusion Models as Masked Autoencoders

• Apply masking to input and reconstruct it

• 𝐴 𝑥 = 𝑥𝑖𝑛𝑝𝑢𝑡 , 𝐴
−1 𝑥 = 𝑥𝑡𝑎𝑟𝑔𝑒𝑡

• argmin
𝜃

ℒ(𝑔𝜃(𝑓𝜃 𝑥𝑖𝑛𝑝𝑢𝑡 ), 𝑥𝑡𝑎𝑟𝑔𝑒𝑡)

• Swap the decoder with a diffusion model

• Same setup as MAE

• Still no compression between 𝑓𝜃 𝑥𝑖𝑛𝑝𝑢𝑡

• But now compression can be introduced

DiffMAE

MAE
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Self-supervised learning: Generative

Bottleneck Diffusion Models for Representation Learning

• 𝐴 𝑥 = 𝑥𝑖𝑛𝑝𝑢𝑡 , 𝐴
−1 𝑥 = 𝑥𝑡𝑎𝑟𝑔𝑒𝑡

• A is different representations of the image

• Diffusion autoencoder

• Continuous latent representation

• Allow for interpolation in the latent

SODA
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Self-supervised learning: Generative

Back to Masked AutoEncoders

• Drawbacks?

• How do we ensure that the information we reconstruct is relevant?

Apply masking

MAE



2411/06/2025 Malte Algren

Self-supervised learning: Generative

Back to Masked autoencoders

• Drawbacks?

• How do we ensure that the information we reconstruct is relevant?

• For image generation (VQ)-VAE are used to compress image

• Then generate the image in the latent space
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Self-supervised learning: Joint embedding

Compare features in the latent space

1. Augmentation in x to make x1 & x2

2. Encoder into latent space: z1 & z2

3. Similarity comparison

• Less redundant information in z1 & z2

• A lot of research in CL 

• SimCLR

• BYOL

• …
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Self-supervised learning: Joint embedding

Compare features in the latent space

1. Augmentation in x to make x1 & x2

2. Encoder into latent space: z1 & z2

3. Similarity comparison

• Joint-Embedding Predictive Architecture
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Self-supervised learning: Joint embedding

Compare features in the latent space

1. Augmentation in x to make x1 & x2

2. Encoder into latent space: z1 & z2

3. Similarity comparison

• Joint-Embedding Predictive Architecture

• Extend to point clouds
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Self-supervised learning: Comparisons

Generative

1. Masked autoencoder MAE

2. Diffusion MAE

Properties

• Loss/reconstruction in x

• Work very well

• Stable 

• Have been sort of left by the by CS

Joint embedding

1. SimCLR

2. BYOL

3. I-JEPA

Properties

• Loss/reconstruction in z

• Very active when it comes to research

• Do also work well

• Can have model collapse

https://arxiv.org/pdf/2111.06377
https://arxiv.org/abs/2304.03283
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Quick points on finetuning

Now you have a pretrained model

• How to finetune it for a task?

• You have access to 𝑓 𝑥 = 𝑧

1. Size of model

• Can you even backpropagate through the model?

2. Domain shift

• ssl in data, finetune on simulation

Thanks for listening! 
Questions?
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