Applied ML

Past Experiences with ML

“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”



On experience

Sentence:

“Experience is simply the name we give our mistakes”,
|Oscar Wilde]

Lemma:

“I didn’t fail. It was a learning experience”,
|Anonymous]



First encounters

Not having any

experience with ML,

I did a lot of mistakes:

* No description of
architecture!

* No HP optimisation.

e No check of data-MC
correspondence.

Worst of all, I had not
thought of any way to
cross check and calibrate
the output.

But... simply throwing
myself at it was a great
experience to build on.
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Higgs Search/Discovery



Motivation

Problem:

Given a number of clean ZZ events,
determine if they are Higgs or SM diboson events!

Possible solution:

Since Higgses are produced quite differently then SM diboson ZZ,
their angular distributions differ!
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Note: H denotes the ZZ system, Higgs or not!
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Normalized

Generator level comparison
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Frequency

Normalized

After fiducial requirements
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Combining variables

Using the 5 variables (i.e. including rapidity) in a BDT (100 trees, 4 nodes):

TMVA overtraining check for classifier: BDTG

O
. -~ AMVA
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1~ | Background (test sample) = Background (training sample) _

olmogorov-Smirnov test: signal (background) probablltt* = 0.266 (0.338) I

(1/N) dN/ dx
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U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

BDTG response



Frequency

Combined angular variable
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Frequency

Combined angular variable
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Combined angular variable
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Conclusion:

The 3 ZZ candidates at 125 GeV are more Higgs than SM dibosons like!




Check for overtraining

Using 9 variables in a BDT (200 trees, 4 nodes) and checking for overtraining:
TMVA overtraining check for classifier: BDTG
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PDFs used in likelihood
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Prob 0
p0 0.1559 + 0.0027
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Angular BDT score

PDFs used in likelihood

—— Higgs (m = 125 GeV)

—— Diboson background
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Angular BDT score
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PDFs used in likelihood

—— Higgs (m = 125 GeV)

—— Diboson background
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Angular BDT score
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PDFs used in likelihood

Lessons [Learned:

e Separation changed dramatically, when fiducial

cuts were included.
| ® Very hard to include ML output in fits.
- | ® Itis complicated to calculate systematics on ML

-~ { output - one needs a plan (we didn’t have one). | .- . =

It was nice to see, that there was no correlation
&4 between ML output and H candidate mass.

But the results build confidence in our results in
the Higgs to ZZ* group, and it subsequently
* {became the

ATLAS - Work in progress B
! A | [ -

1 |

1 1 | 1 1 1 1 1 1 | I | 1 1

|

150 160
Higgs candidate mass (GeV)
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Housing Prices
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Individuel estimates

Shapley-values also gives the possibility to see the reason behind individuel
estimates. Below is an example, illustrating this point.

SHAP plot for #489266
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Above is shown which factors that influences the final estimate of the sales price
(and how much). The estimate is the sum of the contributions (here 6.86 MKz.).

This is a fantastic tool to get insight into the ML workings!!! 8



EjendomsVaerdiO
GeoPostNr
ByggeAAr

flot
Afstand_Kyst
BeregnetAreal
gulvvarme
treenger
eeldre
badeveerelse
leekkert

fantastisk

Word ranking

Bag of Words
° for Villa

High

Feature value
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Result of including text

Natural Language Processing

Term Frequency - Inverse Document Frequency: TF-IDF

Natural weighting of words

CountVectorizer, TfidfVectorizer

MAD(XGB, numerics only) = 0.165

MAD(XGB, text only, BOW) = 0.254

MAD(XGB, combined) = 0.147

Assign a weight to each word,
according to its frequency of use.
Welght_IDF = IOg(NaII / Nappearances)

(Numerics: GeoPostNr, BeregnetAreal, ByggeAAr, EjendomsVaerdiO, Afstand_Kyst )
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Result of including text

Natural Lar

Term F

Nati

Coui

Lessons Learned:
e The ML part of the project was fun and BDTs
worked really well.

e Including text was (at the time) harder, but we
had a way to cross check, if it worked.

e We were not at all prepared for the reluctance
to use this in the real world.

“Big ships turn only slowly!”

-IDF

each word,
quency of use.

\lall / Nappearances)

I S T T— EAY

MAD(XGB, numerics only) = 0.165

MAD(XGB, text only, BOW) = 0.254

MAD(XGB, combined) = 0.147

(Numerics: GeoPostNr, BeregnetAreal, ByggeAAr, EjendomsVaerdiO, Afstand_Kyst )
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Electron Identification
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Input Feature Ranking

Here is an example from particle physics. The blue variables were “known”,
but with SHAP we discovered three new quite good variables in data.

p_Rhad

p_Reta

p_Rhadl

p_nTracks
p_deltaEtal
p_core57cellsEnergyCorrection
p_Eratio

p_Rphi
p_deltaPhiRescaled2
p_E7x11_Lr3
p_TRTPID

p_EptRatio

p_weta2

p_et_calo

p_dPOverP

p_wtotsl

p_E3x5 Lrl
p_E3x5_Lr0

p_E7x11 _Lr2
p_fracsl

p_eta

p_pt_track
p_deltaEta2
NvtxReco
p_ambiguityType
p_flcore
p_numberOfinnermostPixelHits
p_f3

p_deltaEta0

p_fl

p_dO0Sig

p_do
averagelnteractionsPerCrossing
p_numberOfPixelHits

p_numberOfSCTHits 1
0.0

LightGBM Model SHAP Value Rankings

LH PDF variables
+Binning vars
+Selection vars
+Extra vars
+Abundant vars

2.5




Input Feature Ranking

We could of course just add all variables, but want to stay simple, and
training the models, we see that the three extra variables gives most of gain.

Electron ROC Curve Trained in Data

1071

FPR (Background Efficiency)

10—3 1

Reference Likelihood (LH) (AUC = 0.99711)
LightGBM (LH PDF varibles) (AUC = 0.99838)
LightGBM (LH +Binning vars) (AUC = 0.99879)
LightGBM (LH +Selection vars) (AUC = 0.99897)
LightGBM (LH +Extra vars) (AUC = 0.99915)
LightGBM (LH +Abundant vars) (AUC = 0.99923)

1.000

0.800

0.825

0.850

0.875

0.900
TPR (Signal Efficiency)

0.925
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0.975




We could of
training the n

Input Feature Ranking

Fat kL laPay -:11hl- r'\/]/J ,-\11 "'T"\‘Iﬂ‘: f\“ﬂ\“f\h 1‘\11«'— xazant A~ obaxs ﬁ-:mﬂ1 and
y

1071

FPR (Background Efficiency)

10—2<

Lessons LLearned: pst of gain.

The price of being an early mover:

e Make sure you understand the boundary
conditions, i.e. what is wanted from the
algorithm in ALL terms

e Be prepared for people who do not like the
approach.

e Consider that different users may want
different things.

(EGamma driven by people having the W mass
measurement in mind).

0.800

0.825

0.850 0.875 0.900 0.925 0.950 0.975
TPR (Signal Efficiency)

1.000




Electron Regression
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ML at Work:
Electron Energy

regression with CNN
S

Malte en*, Aske Rosted, and Troels C. Petersen

Niels Bohr Instituté, Copenhagen (*now at Univ. of Geneva)



Outline

Outline of talk:
e Motivation
e Context
e Training a CNN for energy reconstruction:
— The data
— The selections
— The input variables
— The network architecture
— Feature wlse Linear Modulation (FiLM)
e Results in MC
e Results in data (v1)

Em barrel Ir3

Em barrel Ir2

Em barrel Irl

* Training in data and “simultaneous training”
— Results in data (v2)
* Outlook

Em barrel IrO

L 100

1071

1072

107

107

Energy + 2e-10 [GeV]
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Motivation

Points of motivation:
e Improve H — ZZ* and H — vy analyses
e Optimise searches for:

— HH — yybb

— H—=Zy

=S EIe=Syay

ATLAS Preliminary + Data
Vs=13TeV, 139 fb" — Fit

----- Background

Events / GeV

* Improve resilience to pile-up
e Improve Z — ee reconstruction

llllllllllllllllllllll

IIIIIIIIIIII]IIIIII IIII

- : H—yy, m,, = 125.09 GeV
e Utilise excellent data for testing: AN

— CNN and GNN models
— data+MC simultaneous training

Data-Background

— e+y simultaneous training

110 120 130 140 150 160
m,, [GeV]

e Improve non-Higgs searches

Goals of lecture:

e Give example of regression with CNN.

e Illustrate concept of attention and FiLM technique.
e Jllustrate “target mismatch” and combined training.
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Motivation

Points of motivation: (You don’t have to care - just know the list is long!)

> ~ T |. . T T T =

& 50000 ATLAS Prellmmajy ¢ Data =

= Vs=13TeV, 139 fb — Fit 3

% 40000 &% e Background —]

> - -]

(w C ]
30000F -
20000} —
100005~ ) m, - 125.00 Gev

o i ; : :

=

3

e

g

Q

@

e

§  -500E . . ‘ .

=2 110 120 130 140 150 160

m,, [GeV]

Goals of lecture:

e Give example of regression with CNN.

e [llustrate concept of attention and FiLM technique.
e [llustrate “target mismatch” and combined training.
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1Z — ee candidate event

o
B

Probe electron [

=l Tog electron
- Ly e

Information used in energy regression:
* Cells [energy, time]

e Electron track(s) [pr, dp/p, etc.]

e Other tracks [to counter pile-up]



The input variables

The variables are both scalar and cell based.
The scalars can be seen in table on the right.

Type Name Description

Eace Energy deposit in layer 1-3 of ECAL.

Windex n cell index of cluster of layer 2.

fOcpuster Ratio of energy between layer 0 and E, in [5| <
1.8 (end of layer 0).

R12 Ratio of energy between layer 1 and 2 in the

Energy ECAL.

pirack pr estimated from tracking for the particle (only
e).

Ercs Ratio between the energy in the crack scintillators
and E,. within 1.4 < [57| < 1.6.

Etile—gap ~ Sum of the energy deposited in the tile-gap.

7 Pseudorapidity of the particle.

Arpg”‘"“!"d Difference between ¢, as extrapolated by track-
ing, use for ECAL momentum estimation and ¢
of the ECAL cluster.

ModCalo  Relative 5 position w.r.t. the cell edge of layer 2 in
the ECAL*.

A Difference between 7, as extrapolated by tracking,

Geometric use for ECAL momentum estimation and # of the
ECAL cluster (only e).

poscsy Relative position of # within cell in layer 2 in
ECAL. 2(’]«‘!14::&7 - er:uxl_‘u'!i)/o'ozs = L, Hetuster 18
1 of the barycenter of the cluster and #,,,xg. is
n of the most energetic cell of the cluster.

Aprhs Relative position in ¢ in a cell. mod(2m +
¢, /32) — /32

() Average proton-proton interaction per bunch
crossing,.

Misc. Miracks # of tracks assigned (only e).

NyertexReco

Number of reconstructed vertices.
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The input variables

The variables are both scalar and cell based.
The scalars can be seen in table on the right.

We consider the cell energies in the LAr
calorimeter as pixels in four images. The cells
contain two (used) types of information:

e Energy (primary variable)

* Time of cell energy

Em barrel Ir3

10

© o &~ N o

Em barrel Ir2

0
2
4
6
8

Em barrel Irl

10

® o & N o)

10

Em barrel IrO

10

©® o & N o

o

20 40

L 100

=
o
)

-
o
N

103

10~¢

Energy + 2e-10 [GeV]
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The input variables

The variables are both scalar and cell based.
The scalars can be seen in table on the right.

We consider the cell energies in the LAr
calorimeter as pixels in four images. The cells
contain two (used) types of information:

e Energy (primary variable)

* Time of cell energy

In order to have the same resolution in each
layer, we upsample the layers to the lowest
common resolution (work by Lucas Erhke).

05 ¢ 05 1 1

Upsamp. 0.5|1 0.5 1 1
>

1.5/ 15

Em barrel Ir3

0
2
4
6
8
10

Em barrel Ir2

Em barrel Irl

Em barrel IrO
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L 100
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—
o
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1073
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Energy + 2e-10 [GeV]
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The variables are both scalar and cell based.
The scalars can be seen in table on the right.

We consider the cell energies in the LAr
calorimeter as pixels in four images. The cells

contain two (used) types of information:

e Energy (primary variable)
* Time of cell energy

Finally, we
consider the
(up to) 10
nearest
tracks in a

“TrackNet”
input:

The input variables

Type Name Description
Energy Prirack/ Girack  Transverse momentum of track di-
vided by its charge g
do/og d0 is the signed transverse distance
between the point of closest approach
and the z-axis where oy is its uncer-
tainty
AR AR = \/(¢o — )% + (110 — 1)?
Geometric verteXrack Reconstructed vertex of the track
z0 Longitudinal distance between the
point of closest approach and the z-
axis.
Wirack Reconstructed |#| of tracks.
Prrack Reconstructed ¢ of tracks.
Myixel Number of hits in the pixel detector
Misc. nscr Number of hits in the SCT
HTRT Number of hits in the TRT

Em barrel Ir3
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2
4
6
8
10

Em barrel Ir2

0
2
4
6
8
10

Em barrel Irl
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L 100
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The network architecture

There are many ways to combine the input variables, and we have considered
the following architectures, where the dashed lines are the considerations.

- r - '
X1 rack ‘\S('ellzll' ‘\llng X gate-img

| | l
TrackNet ScalarNet Merge

:,_ _____ 4;._., FiLM gen. Upscale
_____________ CNNnet

l o O

» Top T /)\

First, let us consider each part...
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Feature wlse Linear Modulation

- y Type Name Description

56,11.4 : X

( ) X mg scalar Eace Energy deposit in layer 13 of ECAL.
Windex 1 cell index of cluster of layer 2.

fOuuster  Ratio of energy between layer 0 and Ey in 5] <
1.8 (end of layer 0).

- A R12 Rati f el bets 1 1 d 2 in th
(P')(’). 35, _L) Upsamp'e sy h‘a:AoLu energy between layer 1 and 2 in the
+ pirack pr estimated from tracking for the particle (only
e)
Ercs Ratio between the energy in the crack scintillators
CNN Scalar net and Eyee within 14 < ly] < 16.

Eite_gop  Sum of the energy deposited in the ile-gap.

(36,55, 16) ORI - Dense(236) v Peadompidty ftheparic
} . Agyscaled  Difference between ¢, as extrapolated by track-

ing, use for ECAL momentum estimation and ¢
of the ECAL cluster.

IModcslo Relative 7 position wir.t. the cell edge of layer 2 in
the ECAL®.

A Difference between 7, as extrapolated by tracking,
Geometric use for ECAL momentum estimation and 7 of the
ECAL cluster (only ¢).

(28,27.16)
(28,27,32)

poscsy Relative position of # within cell in layer 2 in
ECAL. 2(etuster = thmaxteet)/0.025 = 1, Nepuser is
1 of the barycenter of the cluster and #,,,x£ce i
1 of the most energetic cell of the cluster.

Apras Relative position in ¢ in a cell. mod(2m +
¢, 7/32) — /32

(u) Average proton-proton interaction per bunch
crossing.

Misc. Miyaks  # of tracks assigned (only ¢).

FiLM gen. Muertexkeco Number of reconstructed vertices.

FLM(x;) = 7i(2)x + Bi(2)

(14,13.32)
(14,13.64)

(2.60) | By

A

|
I
e (FiLM: Feature wise Linear Modulation
(7,6,61)  eo— of the CNN output layers based
(7,6.128)  — ) | on the scalar input variables.)
|
I .
[ — Before the convolutions are
(3:5120) | e— pooled, they are weighted
3,3.256) | E— 95 . P 7
o PTRGELOE (linearly) by the “context”.
" Top In this way, the best filters in
- Dense(256) i i
» . v the given case are given the
= most weight.
I




The network architecture

Testing all the different combinations yields the optimal architecture.

We evaluate the performance in the same way as previously done, namely the
effective InterQuantile Range (eIQR) of the Relative Error (RE).

P75 (RE) — Py5 . Ecalib
eIQR = (RE), || RE= ,

1.349 Etrutn
relQR75 relQRgs5
Basic -0.121 -0.025
FiLM: scalar 0.229 0.257
FiLM: scalar - top: scalar 0.229 0.252
FiLM: scalar - top: scalar track 0.223 0.251

| FiLM: scalar - top: track 0.226 0.264 I Best Ar

FiLM: scalar track 0.228 0.265
FiLM: scalar track - top: scalar track 0.210 0.262
FiLM: track - top: scalar -0.042 -0.067
FiLM: track - top: track 0.140 0.149
top: scalar -0.154 -0.131
top: scalar track 0.213 0.233
top: track 0.136 0.164

Hyperparameter Parameter
TrackNet

Units (128, 64, 32,16)

Normalization Batch

Kernel size & filters

5

Connected to [Top]

ScalarNet
Units (256)
Normalization Batch
Connected to [FILM]
4 . ) FiLM gen.

cmigecture (512, 1024)
Normalization Batch
CNNnet
Down-sampling MaxPool
Globalpooling MaxPool
Number of blocks 3
Depth of blocks 4
Top

Units (512, 512, 1)

Output activation

ReLLU
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Electron Energy Regression
Results (v1)



The results in 2D

The Et distribution for truth (x-axis) and
reconstruction (y-axis) can be compared for
the current ATLAS and the DeepCalo
algorithms.

As the figure shows, both algorithms do well,
and improve with energy.

As the statistics is largest around 40 GeV, this
is where the comparison is most detailed, and
here DeepCalo visibly has a significantly
reduced lower edge.

Thus, the DeepCalo more rarely undershoots
the energy.

MC

Er, pred [GeV]

ET, prea [GeV]

100

80

20

20

20

40 60
ET, trutn [GeV]

40 60
ET, truth [GeV]

80

80

100

100

104

103

10?

10!

10°
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The results in 1D - MC

Integrating the previous plot into 1D considering the RE distribution, we see a
general sharpening. The improvement in relative eIQR (relQR) is about 22%.

120001
10000+
l
8000 !
1 I ]
6000 4 !
11 ]
l [
4000+ | : : |
22.354% improvement in elQR75
1 26.063% improvement in elQR95
2000 | — | ATLApS elQR75: 0.0348
] DeepCalo elQR75: 0.027
O ; 11 : | I :
096 098 1.00 1.02 1.04
E pred/ E truth

Naively, we would of course love to see a similar number in data!



Result in Zee - MC

On the Zee peak, we evaluate the improvement by fitting with a BW®CB fit,
considering the CB width (sigmaCB) as the performance parameter. We get:

= 23.5+0.4%

Events/(0,1)

6000,

5000,

4000,

3000,

‘\III‘IIII|IIII|\

2000,

1000,

PR T AN TR T T (Y S [ L1 L1 L1 y
80, 85, 90, 95, 100, 105

DeepCalo
1 % P ) — 1 1:8810+0.006
o'é‘gLAS 2.393 +£0.01

alphaCB = 1,400 + 0,029 = C
Current BDT meanBW = 91,19 g 6000.F

meanCB = -0,46388 + 0,0098 § -

nCB = 1,50 + 0,11 “ 5000,

ntotal = 490238,00 -

sigmaBW = 2,50 4000, —

sigmaCB = 2,393 + 0,010 I

DoF =296, x° =1256,p=0.0 3000,

MC

Invariant mass (GeV/c

Pull of Histogram of mc_Zee_mZ_plot__m_ee and Projection of signal_func_Zee

NNNI' I

2000,

1000,

DeepCalo

alphaCB = 1,322 + 0,026
meanBW = 91,19

meanCB =-0,39140 + 0,0093
nCB = 1,875 + 0,100

ntotal = 496112,00

sigmaBW = 2,50

sigmaCB = 1,8625 + 0,0098

DoF = 296, x* =924,p=0|0

MC

L |

?)

1 1
90, 95, 100, 105,
Invariant mass (GeV/c 2)

Pull of Histogram of me_Zee_mZ_plot__m_ee and Projection of signal_func_Zee




Result in Zee - MC

On the Zee peak, we evaluate the improvement by fitting with a BW®CB fit,
considering the CB width (sigmaCB) as the performance parameter. We get:

DeepCalo 1.8310 4 0.006

UCB _ _ 0
(1-"CB__ ) =1- — 235+ 0.4%

Events/(0,1)

o 2.393 +£0.01
CB
6000, 7 alphaCB = 1,400 + 0,029 = E alphaCB = 1,322 +0,026
B meanBW = 91,19 ~ 6000, |- meanBW = 91,19
5000, — Current BDT meanCB = -0,46388 + 0,0098 g E Deepcalo meanCB = -0,39140 + 0,0093
u nCB = 1,50 +0,11 e 5000':_ nCB = 1,875 + 0,100
4000, |— ntotal = 490238,00 - ntotal = 496112,00
: sigmaBW = 2,50 4000, — sigmaBW = 2,50
3000, - sigmaCB = 2,393 = 0,010 I L sigmaCB = 1,8625 + 0,0098
- DoF = 296, x* =1256,p = 0.0 3000, — DoF = 296, x* =924,p=0[0
2000, [— DAL 2 M C
B L] L]
Great - now let us try this in real data!

| L I N' 0, P I T S R R S T R |

|

1 1 | 1 1 L L 1 1
80, 85, 90, 95, 100, 105, 80, 85, 90,
Invariant mass (GeV/c ©)

Pull of Histogram of mc_Zee_mZ_plot__m_ee and Projection of signal_func_Zee

1
95,

1
100, 105,
Invariant mass (GeV/c 2)

Pull of Histogram of me_Zee_mZ_plot__m_ee and Projection of signal_func_Zee
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Results on Zee - data (v1)

The result we get is a much more modest improvement:

O_DeepCalo
(1- - —)=1

2.058 £ 0.010

ATLAS
cB

2271 +0.019

= 9.4 1 0.9%.

Though perhaps a little disappointing, this is not surprising, as we can not
expect the MC to mimic data perfectly in the very large space considered.
Also, models trained on Zee do not generalise well to all energies (EG, 6.8%).

Events /(0.1)

1800

1600

1400

1200

| alphacB = 1.349 + 0.054

j meanBW = 91.19

meanCB = -0.6662 + 0.018
nCB = 1.81 £0.24

ntotal = 154174.00
sigmaBW = 2.50

sigmaCB = 2.271 +0.019

T

DoF =296, x> =672,p=0/0

Data

1 1 1 1 1 1 1 1 1 1 1 1 1
80 85 90 95 100 105
Invariant mass (GeV/c %)

Pull of Histogram of me_Zee_mZ_plot__m_ee and Projection of signal_func_Zee

/(0.1)

Events

2000

1800

1600

1400

1200

1000

800

600

400

200

T

II[I I

III T

‘III|[ I|[ I,Hw

alphaCB = 1.439 + 0.058

meanBW = 91.19

meanCB = -1.1574 + 0.016
nCB= 1.68 +0.22

ntotal = 155106.00
sigmaBW = 2.50

sigmaCB = 2.036 +0.018
DoF =296, x? =876,p=0|0

I

1 1 1 1 1 1 1 L 1 L 1 1 y
80 85 90 95 100 105

Invariant mass (GeV/c ?)

Pull of Histogram of me_Zee_mZ_plot__m_ee and Projection of signal_func_Zee
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Electron Energy Regression
Training in data



Probe energy label in data obtained /
from Z-mass (M) constraint:

Z — ee candidate event
M? . \
2E75(cosh(ny — 1m2) —cos(p1 — ¢2)) B b " =~/

E/aln’],dnta =

o [ag electron
/ Q \\}g ! - i :\.\:’}’j
A

i -~y

Information used in energy regression:
* Cells [energy, time]

e Electron track(s) [pr, dp/p, etc.]

e Other tracks [to counter pile-up]

&



labels” in data, by assuming the true Z mass:

Using such labels, we train in data and get...

Training in data

Using Zee events with invariant masses 86-97 GeV, one can get “approximate

M? =2pr1pra(cosh(m —n2) — cos(¢y — ¢2)), pr=Erd
M2

2E7(cosh(11 — 72) — cos(¢1 — ¢2))”

with Ey, = Ecalib(®PT) and M? = 91.19?

E label data =

DeepCalo
<1 . UcB

cB

ATLAS

) =5.9+0.9%

Events /(0.1)

E alphaCB = 1.348 + 0.054
1800 ¢
c meanBW = 91.19
1600 - meanCB = -0.6660 < 0.018
1400 — nCB= 1.81 +0.24
- ntotal = 154248.00
1200 = sigmaBW = 2.50
1000 — sigmaCB = 2.271 +0.019
r _ 2 _ _
800 DoF =296, x° =671,p=0/0
600 D a ta
400 —
200"

PRI S SN
100

105
Invariant mass (GeV/c %)

PR SN ST SN N TR S S '
80 85 90 95

Pull of Histogram of m¢_Zee_mZ_plot__m_ee and Projection of signal_func_Zee

Events /(0.1)

|

alphaCB = 1.220 + 0.048

meanBW = 91.19
meanCB = -0.0771
nCB = 233 +0.26
ntotal = 154854.00
sigmaBW = 2.50
sigmaCB = 2.101 +0.020

+0.020

DoF =296, x* =605,p=0|0

Data

100 105
Invariant mass (GeV/c )

80 85 90 95

Pull of Histogram of m¢c_Zee_mZ_plot__m_ee and Projection of signal_func_Zee
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labels” in data, by assuming the true Z mass:

Using such labels, we train in data and get...

Training in data

Using Zee events with invariant masses 86-97 GeV, one can get “approximate

M? =2pr1pra(cosh(m —n2) — cos(¢y — ¢2)), pr=Erd
MZ

2E7(cosh(11 — 72) — cos(¢1 — ¢2))”

with Ep, = Ecalib®PT) and M? = 91.19?

E label data =

DeepCalo
<1 . UcB

cB

ATLAS

) =5.9+0.9%

Events /(0.1)

| alphacB = 1.348
meanBW = 91.19
meanCB = -0.6660 =+ 0.018
nCB = 1.81 +0.24
ntotal = 154248.00
sigmaBW = 2.50
sigmaCB = 2.271 +0.019

| DoF = 296, x2 =671,p=00

Data

+0.054

...............

105
Invariant mass (GeV/c )

Pull of Histogram of m¢_Zee_mZ_plot__m_ee and Projection of signal_func_Zee

(0.1)

Events

not great!

Damn... still

TPTICE T IO
meanBW = 91.19

meanCB = -0.0771
nCB = 2.33 +0.26
ntotal = 154854.00
sigmaBW = 2.50

sigmaCB = 2.101 +0.020

+0.020

DoF =296, x* =605,p=0|0

Data

100 105

80 85 90 95 ]
Invariant mass (GeV/c )

Pull of Histogram of m¢c_Zee_mZ_plot__m_ee and Projection of signal_func_Zee
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Electron Energy Regression
Training in data and MC



Training in data and MC

Once we have labels in data, there is nothing keeping us from combining the
loss functions of MC and data (they even have the same form), and thus
training simultaneously in data and MC:

L(y, 9) — [’(y(Zee, MC)- 9(Zee, MC)) + L(y(Zee, Data)- y(Zee, Data))

This allows the model to both use the “strength” of MC, but also learn the
differences between MC and real data.

12000 , ,
o . . . 1 I
Doing this and trying out the result in 10000 | |
MC first yields: ! Lo
8000 !
1
DeepCalo 6000 |ty
(reIQRs 7-*°) =22.1+0.3% : |
40001 . Lo
21.593% improvement in elQR75
b V4 > 24.565% improvement in elQR95
OK, so at least it doesn’t ruin the model 2000 e 0 oas
for MC. Now let us try data... 0 e N
0.96 0.98 1.00 1.02 1.04

E pred/ E truth
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Result in data (v2)

The result in data is rather encouraging, and greater than the sum of the
improvements from training separately in MC (9.4%) and data (5.9%).

DeepCalo

1.86 = 0.010

IcB _
<1 ~_ATLAS > -
OcB

1- 2271 +0.019

= 18.3 = 0.8%,

Events/(0.1)
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nCB = 1.81 +0.24

ntotal = 154248.00
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Data
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1600 =
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1400 = sigmaBW = 2.50
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1000 — DoF =296, x° =617, p=0[0
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0 [ Il P R |- L1 L 1 1
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52



Outlook

While this is still “only” an improvement in the electron energy regression, and
only for lower energies (Zee range), the simultaneous training allows for
extending the energy range, by including the Electron Gun MC.

Furthermore, this training might be extended to include photons, as these
behave much the same as electrons, and suffer the same sources of uncertainties
and smearing.

For improving the H — vy resolution, one might use the following loss function
and related training samples:

L(y/ yA) — L(y(Zee, MCQC)- 9(Zee, MC)) + E(E/(Zee, Data)- yA(Zee, Data) ) +

‘C(y(Zy;t'y, MCQC)- ]?(Zy],t'y, MC)) + ‘C(y(Zyy'y, Data)- 9(Zyy'y, Data) ) +

E(]/(H’yfy, MC)/ ?(H')r'y, MC))

Meanwhile, we are trying to write this up somehow (but Malte is now a Ph.D.
in Geneva).
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Outlook

While this is st
only for lower
extending the

Furthermore, 1
behave much f
and smearing.

Lessons Learned:

e Remember to think about publishing. Even
what may seem “a fun little example” at the
time, may turn out to inspire a new line of
thinking.

e Remember to think about the longevity of any
approach. In this case, the storage of cell
information was discontinued shortly after!

eression, and
ws for

hs these
F uncertainties

For improving-urcrs

)/ Y 1L oVUIutivllL, UlIc _llllb.llt UOC UIIC 1VIIVUYVVIIL

and related training samples:

> Joss function

L(y,7)

‘C(y(Zyy'y, MCQC)- ]?(Zyy'y, MC)) + ‘C(y(Zyy'y, Data)

A

‘C(y (Zee, MC)- y (Zee, MC)) + ,C(]/ (Zee, Data)’ Y (Zee, Data) ) +

A

L(y(H’y'y, MC)/ yA(H'y'y, MC))

Y(zZup-y, Data) ) +

Meanwhile, we are trying to write this up somehow (but Malte is now a Ph.D.

in Geneva).
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FRET is a technique used
to study and dynamics
of biomolecules.

The data is a “trace”,
which is a time series
with possible phase

transitions.

The group would go
through 10000 traces and
select about 250 of
these... by hand!!!

This took a few people
about a week, and was
neither reproducible nor
optimal.

So we made DeepFRET.

DeepFRET

\ €€
[ K
\\
FRET
apsablatug 2K ‘.
_________________ ¥ e e )
FRET
35 QO P ™k
H DDA RSURT W LR |
Ji: MY
= FRET
. Export for
T Dat
osamlzﬁaelmpha;:\ — smF?Ree l‘re:cr;"c"lg.sb:if’imon » lhresi?o?dmg » Statistical analysis L4 do;:’)nas'}f/r;gm
backvands conpatble
W provioualy scoured dete”
® 3 [TJAggregate
2 F-4 A
L Neural : 3 [INoisy } discard trace
3 R B [C]scrambled
« =
g E]Stanc ngRET } keep trace

95



DeepFRET

FRET is a technique used

to study and dynamics ?

of biomolecules. [ e A X pC€

The data is a “trace” _/ (™ .A.'u".’k J\M ,J)J v y

which is a time Lessons Learned: v T

with possible pll ® The experience was rather good, as the group <.¢

transitions. really wanted to go this way, and was amazed ]X °

at how well it worked.

The group wou]| ® However, the field was dubious to say the least! [“~*

through 10000 tf No one published how they classified traces. eo » [Ci€

select about 250, No one published their raw data either. -

these... by hand!!! o g T

This took a few people ¢ ]

about a week, and was _ BN | Eoeeu e

neither reproducible nor g T T R

optimal. “ 1 B e
/= ]

So we made DeepFRET.
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Knee- & Hip surgery



ROC curve

The previous figure is summarised in this plot, where one can see the false
positive rate (x-axis) vs. the true positive rate (y-axis).

ROC curve
1.0 1 ==~ Random Chance
—— LightGBM Confusion matrix:
® Cut [[832 169]
0.8 A /,’ [ 27 29]]
© ,/’ :
= - rue Negatives(TN) =
; 0.6 - rue Positives(TP) =
e False Negatives(FN) -
s False Positives(FP) =
o
3 0.4 - F1 score -
S F1 (beta=2) score =
= atthews c@rrcoef i
Cohens Kappa i
0.2 A rue Positive Rate(TPR) =
0.0 A

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

The red dot corresponds to the cut before (> 0.14), and yields the values shown
on the right.

From a medical point of view, one can then choose an operational point on the
blue curve (the dashed line being a random choice).



Ranking of features

Here we show what the
most important features
were in the analysis.

age
hospital
hb
rested

walking_tool

hypertension_yes or_prescription

Age is no surprise!
HB (= blood pressure?)
also ranks high.

Hospital is not great to
see so high in the list! (*)

Also good is to see
“snore” and the likes low
in the list.

height

bmi

weight
civil_status

psd
pulmonary_disease
joint

dm_type

kidney
cerebral_attack
snore
hyper_colesterol
ak_beh

family_vte

0.00 0.02 0.04 0.06 0.08 0.10

mean(|SHAP value|) (average impact on model output magnitude)
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Further improvements

We don’t know which is “Hospital=9”, but we don’t want to send Mathias

there!
2.00
L
0.4 - I
1.25
| -
= 0.2 0
ek : 5
T o 050 0
(@) " —
< 00- ’ : >
s . U]
n
—0.25
—0.2 1
[ 1
—04 T T T T T T T T T —100
1 2 3 4 5 6 7 8 9

hospital 50



Further improvements

We don’t know which is “Hospital=9”, but we don’t want to send Mathias
there!

2.00
Lessons Learned:
i | The enquiry about the data was fitting, and in
' this case the data was really nice.
e BDTs were the obvious way to go, given all Dol

5 75 sorts of NaNs, categories, and binary input.

: - 0
qq_) = e The speed with which we could make models 3
) .
=5 impressed our collaborators - twice. 0.50 o
> : : : '
o :__8 004 | ® Asking for outline data is useful. §I
T e The use of SHAP values was extremely useful, O
n .

and also convinced our colleagues.
! 1 —0.25
—0.2 A
e O . 4 T T T T T T T T T - 1 . 00
1 2 3 4 5 6 7 8 9
hospital
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IceBoost

Estimating the volume of glaciers is “hard” given the lacking 3D view. But it
can be done using satellite images, climate, and physics (mass balance).

900

i)

IceBoost: 1307 km? Modell: 1466 km? Model2: 1602 km?

800
700
600
500
400
300
200

59.70 100

-141.00 -140.50 -140.00
Lon (°E)

Thickness (m)

In order to estimate what the ground underneath looks like, we tried using
inpainting. It worked reasonably well, but never beat the BDT approach.
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IceBoost

Estimating the volume of glaciers is “hard” given the lacking 3D view. But it
can be done using satellite images, climate, and physics (mass balance).

IceBoost 1307 km3 Modell 1466 km? Model2 1602 km3

_‘ ‘ﬂ-‘... = ﬁ k%fi‘a*“'
Lessons Learned:
et e The preparation of data was the most
60.30 -4 SR demanding (high domain knowledge).

were correlated. Careful with making a test set.
| We have contlnued to try thls on Antarctica!

59.70

-141.00 -140.50 -140.00
Lon (°E)

900
800
700
600
500
400
300
200
100

Thickness (m)

In order to estimate what the ground underneath looks like, we tried using
inpainting. It worked reasonably well, but never beat the BDT approach.
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