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IceCube
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• Neutrino telescope


• Located at the South Pole


• Detector volume: 1 cubic kilometer


• Oftentimes observes through Earth


• 5160 optical modules (DOMs)


• Public dataset from Kaggle 
Competition 130 million events

KM3NeT module:
* I am not a member of IceCube

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/leaderboard
https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/leaderboard


IceCube event
https://youtu.be/OXSqiPLn9CM?si=nnvKH0WpJgEWRn56 
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https://www.youtube.com/watch?v=OXSqiPLn9CM
https://youtu.be/OXSqiPLn9CM?si=nnvKH0WpJgEWRn56


Inverse problem: reconstruct the neutrino direction
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• Neutrino energy


• Neutrino direction 
(astrophysical sources; identification with 
galactic plane) 


• Traditional methods: likelihood based


• 


•  

 - pulse time,  - charge


• To maximize the likelihood one has to 
simulate light propagation through Ice 
(currently used:  arxiv.org/abs/2103.16931)

L(x, y, z, t, θ, ϕ) = p(data |x, y, z, t, θ, ϕ)

L(x, y, z, t, θ, ϕ) =
NDOM

∏
j=1

Nhit

∏
i=1

[pj(ti)]qi

ti qi

https://arxiv.org/abs/2103.16931


Machine Learning in IceCube
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• Graph Neural Networks for Low-Energy Event Classification & Reconstruction in IceCube 
https://arxiv.org/abs/2209.03042


• A Kaggle competition in 2023 
(901 Participants)


• Kaggle is a specialized platform  
for ML competitions


• Still not better than  
traditional methods at high energies

https://arxiv.org/abs/2209.03042


Can we learn something from LLM progress?
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• LLMs benefit from internet-scale datasets.


• Physics also has a lot of data.


• Both labeled (MC) and unlabeled.


• Can we benefit from unlabeled data?

source:  
https://home.cern/news/news/computing/exabyte-disk-storage-cern 

https://home.cern/news/news/computing/exabyte-disk-storage-cern


What do we mean by “foundation models”?

• Initially, the term has been coined for models like BERT and GPT-3 
2108.07258 “On the Opportunities and Risks of Foundation Models”


• Here, by foundational models we mean the models that are pretrained in a self-supervised way and 
can be fine-tuned for downstream tasks.

7

supervised training

X y

data model labels

self-supervised training

X

data model

https://arxiv.org/abs/2108.07258


Success of self-supervise training
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• Labeled data is limited


• Unlabeled data is abundant 
(text, image, video)


• Led to GenAI revolution

Outside physics:

2020 2022 2024 2026 2028 2030 2032 2034
Year
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GPT-3

PaLM

Falcon-180B
FLAN

Llama 3

DBRX

Stock of data

Dataset size projection

Median date of
full stock utilization
(5x overtraining)

Year

BERT - 3.3B tokens

source: 
2211.04325 “Will we run out of data? 
Limits of LLM scaling based on human-generated data”

1810.04805  “BERT: Pre-training of Deep Bidirectional  
Transformers for Language Understanding”
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https://arxiv.org/pdf/2211.04325


Self-supervise training: Scaling Laws
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https://arxiv.org/pdf/2001.08361 
Scaling Laws for Neural Language Models 
Jared Kaplan et al

Performance predictably improves with scale

https://arxiv.org/pdf/2001.08361


Foundation models in particle physics 
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• Pre-training strategy using real particle collision data for event classification in collider physics 
https://arxiv.org/abs/2312.06909  
Tomoe Kishimoto, Masahiro Morinaga, Masahiko Saito, Junichi Tanaka 

• Finetuning Foundation Models for Joint Analysis Optimization 
https://arxiv.org/abs/2401.13536  
Matthias Vigl, Nicole Hartman, Lukas Heinrich 

• Masked Particle Modeling on Sets: Towards Self-Supervised High Energy Physics Foundation Models 
https://arxiv.org/abs/2401.13537  
Lukas Heinrich, Tobias Golling, Michael Kagan, Samuel Klein, Matthew Leigh, Margarita Osadchy, John Andrew Raine


• A Language Model for Particle Tracking 
https://arxiv.org/abs/2402.10239  
Andris Huang, Yash Melkani, Paolo Calafiura, Alina Lazar, Daniel Thomas Murnane, Minh-Tuan Pham, Xiangyang Ju 

• OmniJet-α: The first cross-task foundation model for particle physics 
https://arxiv.org/abs/2403.05618   
Joschka Birk, Anna Hallin, Gregor Kasieczka 

• Re-Simulation-based Self-Supervised Learning for Pre-Training Foundation Models 
https://arxiv.org/abs/2403.07066 
Philip Harris, Michael Kagan, Jeffrey Krupa, Benedikt Maier, Nathaniel Woodward  

• OmniLearn: A Method to Simultaneously Facilitate All Jet Physics Tasks 
https://arxiv.org/abs/2404.16091  
Vinicius Mikuni, Benjamin Nachman

(a very incomplete list)

https://arxiv.org/abs/2312.06909
https://arxiv.org/abs/2401.13536
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2404.16091


Foundation models in astro and particle physics 
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• Bumblebee: A Foundation Model for Particle Physics Discovery 
https://ml4physicalsciences.github.io/2024/files/NeurIPS_ML4PS_2024_191.pdf  
(Authors not fully listed in snippet) 

• Towards a collaborative approach with Large Language Models and Foundation Models for scientific understanding in fundamental physics 
https://arxiv.org/abs/2501.05382  
(Authors not fully listed in snippet) 

• Bridging the Gap: Examining Vision Foundation Models for Optical and Radio Astronomy Applications 
https://arxiv.org/abs/2409.11175  
E. Lastufka, O. Bait, M. Drozdova, V. Kinakh, D. Piras, M. Audard, M. Dessauges-Zavadsky, T. Holotyak, D. Schaerer, S. Voloshynovskiy 

• AstroCLIP: A Cross-Modal Foundation Model for Galaxies 
https://arxiv.org/abs/2310.03024  
Liam Parker, Francois Lanusse, Siavash Golkar, Leopoldo Sarra, Miles Cranmer, Alberto Bietti, Michael Eickenberg, Geraud Krawezik, Michael McCabe, Ruben Ohana, Mariel Pettee, Bruno Regaldo-Saint Blancard, Tiberiu Tesileanu, Kyunghyun Cho, Shirley Ho 

• Towards an astronomical foundation model for stars with a Transformer-based model 
https://arxiv.org/abs/2308.10944  
Henry W. Leung, S. G. Djorgovski 

• Self-Supervised Learning Strategies for Jet Physics 
https://arxiv.org/abs/2503.11632  
Patrick Rieck, Kyle Cranmer, Etienne Dreyer, Eilam Gross, Nilotpal Kakati, Dmitrii Kobylanskii, Garrett W. Merz, Nathalie Soybelman 

• HEP-JEPA: A Joint Embedding Predictive Architecture for a Foundation Model in High Energy Physics 
https://arxiv.org/abs/2502.03933  
(Authors not fully listed in snippet) 

• Enhancing Masked Particle Modeling for High Energy Physics Foundation Models 
https://arxiv.org/abs/2409.12589  
(Authors not fully listed in snippet) 

• A Foundation Model for Event Classification in High-Energy Physics 
https://arxiv.org/abs/2412.10665  
(Authors not fully listed in snippet) 

• Large-scale Pretraining and Finetuning for Efficient Jet Classification in Particle Physics 
https://arxiv.org/abs/2408.09343  
(Authors not fully listed in snippet) 

• Enabling Unsupervised Discovery in Astronomical Images through Self-Supervised Representations 
https://arxiv.org/abs/2311.14157  
Koketso Mohale, Michelle Lochner 

• Data Compression and Inference in Cosmology with Self-Supervised Machine Learning 
https://arxiv.org/abs/2308.09751  
Aizhan Akhmetzhanova, Siddharth Mishra-Sharma, Cora Dvorkin 

• AstroM³: A self-supervised multimodal model for astronomy 
https://arxiv.org/abs/2411.08842 
Mariia Rizhko, Joshua S. Bloom

See Gemini Report 

https://ml4physicalsciences.github.io/2024/files/NeurIPS_ML4PS_2024_191.pdf
https://arxiv.org/abs/2501.05382
https://arxiv.org/abs/2409.11175
https://arxiv.org/abs/2310.03024
https://arxiv.org/abs/2308.10944
https://arxiv.org/abs/2503.11632
https://arxiv.org/abs/2502.03933
https://arxiv.org/abs/2409.12589
https://arxiv.org/abs/2412.10665
https://arxiv.org/abs/2408.09343
https://arxiv.org/abs/2311.14157
https://arxiv.org/abs/2308.09751
https://arxiv.org/abs/2411.08842
https://docs.google.com/document/d/1jOKMWKZK5YO5IWcBP6Egdig6DXLJLMxoe014kARuqSU/edit?usp=sharing


Challenges of self-supervise learning in particle physics
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BERT  
(Bidirectional Encoder Representations from Transformers)

predict the distribution of a token from a discrete set

A jet foundation model

Graph Neural [MASK] and

Graph Neural Networks and

BERT (masked language model)

…

…

…

…

[MASK]

???

A jet foundation model

…

…

…

…

How to predict a continuous 4-vector?

Usually lossy discretization: 
- VQ-VAE (2401.13537, 2403.05618) 
- pixelization (2402.10239)



Challenges of self-supervise learning in particle physics

13

• How to predict a continuous 4-vector?


• Usually lossy discretization: 
- VQ-VAE (2401.13537, 2403.05618) 
- pixelization (2402.10239)


• How to sort 4-vectors? 

• IceCube 


• 5160 DOMs — natural “tokenization”


• Pulses have timestamps 



IceCube Embedding
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No position data!

linear layer transforming DOM x,y,z coordinates 
works better for directional reconstruction



Pretraining
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ID 
t, q, aux

ID 
t, q, aux

ID 
t, q, aux

ID 
t, q, aux

ID 
t, q, aux

ID 
t, q, aux pad pad

padded to seq_len pulses

[CLS]

PolarBERT

mask mask

time

to calculate DOM loss to calculate DOM loss
predict  
total charge

15



Pretraining: DOM loss
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• The detection process is inherently stochastic


• We cannot predict the next DOM with certainty


• Similarly to LLMs, we use cross-entropy  
(but other option are possible: Earth Mover's Distance, Chamfer distance)


• DOM-loss: , the sum over  masked doms


• Use only aux=false (HLC) pulses! aux=true pulses are impossible to predict.

LCE = −
1
N

N

∑
i=1

log(pi) N



Pretraining: regression loss
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• The model has to learn how to collect useful information in [CLS] embedding 
for the future use on downstream tasks.


• We need some feature that is not directly accessible to the model, but can be obtained from 
the data (no labels)


• Candidates: the total charge of the event, center of charge


• We subsample the events, and the charge is provided as a log


• Charge prediction loss: MSE( ( total charge) )log



PolarBERT: Foundation Model For IceCube
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100 million events

BERT:           3,300M     tokens 
PolarBERT:  12,700M “tokens” 
(100M events x 127 pulses)

• Backbone: transformer  (could be GRU, Mamba)


• Pretraining: 


• Subsample events to seq_len (currently 128)


• input: (DOM projections)  (projection of features)


• loss function = DOM-loss +  charge-prediction-loss


• Fine-tuning for downstream tasks


• IceCube kaggle MC data for both pretraining and finetuning 
(studies using real data can be only published by the 
collaboration)

⊕

λ ×

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/leaderboard


PolarBERT: Foundation Model For IceCube
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• Backbone: transformer  (could be GRU, Mamba)


• Pretraining: 


• Subsample events to seq_len (currently 128)


• input: (DOM projections)  (projection of features)


• loss function = DOM-loss +  charge-prediction-loss


• Fine-tuning for downstream tasks


• IceCube kaggle MC data for both pretraining and finetuning 
(studies using real data can be only published by the 
collaboration)

⊕

λ ×

a typical model (7.6M params)  
see the Config

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/leaderboard
https://github.com/timinar/PolarBERT/blob/main/configs/polarbert.example.yaml


Interpreting the DOM Loss

2020

LCE = −
1
N

N

∑
i=1

log(pi)

some uncertainty about the string and the DOM



Model Size Scaling
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Models trained to convergence 
Kaplan et all, 2020

LLMsPolarBERT

Models trained on 10M neutrino events



Dataset Size Scaling
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Models trained to convergence 
Kaplan et all, 2020

LLMsPolarBERT

7.6M Models 



Finetuning (Directional Reconstruction)
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• Pretrained model can be successfully 
fine-tuned on a downstream task.


• We add a “prediction head”: an MLP to 
the [CLS] embedding output.


• Train the resulting model with direction 
labels.


• Fine-tuning is sample-efficient.


• When tuned on the full Kaggle dataset, 
the mean angular error is 0.984. 
This corresponds to a Kaggle silver 
medal.


• Results with a 6.6M model. We expect 
improvement with the size. 



Takeaways
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• We can leverage unlabeled data for IceCube direction reconstruction. 

• Our foundation model, PolarBert, is competitive with Kaggle models. 

• Scaling also works in physics (but with smaller exponents).



Technical Bits
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• Experiments


• Comparing apples to apples is hard. 


• One has to tune hyperparameters of all models!


• Comparing models trained with the same hyperparameters could be misleading! 


• Technically, wandb sweeps are convenient.  
But still hard to interpret, since parameters correlate. 


• See recipes here: https://github.com/google-research/tuning_playbook


• For scaling P is useful (see here https://github.com/EleutherAI/nanoGPT-mup)  μ

https://github.com/google-research/tuning_playbook
https://github.com/EleutherAI/nanoGPT-mup


Technical Bits
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• LR Schedule 

• LR Schedule (warmup with ~1/(1-beta) steps, annealing)  
significantly improves the performance


• Cosine schedule is very popular.  
* Great results 
* Hard to compare different dataset sizes 
* hard to tune the parameters (many correlations)


• Trapezoidal schedule 
* Similar performance (last ~1000 annealing steps are important) 
* Better for parameter tuning and model comparison



Technical Bits
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trapezoidal (green) vs cosine (purple) schedule


