HAMLET Physics 2025

Imaging Electron Beams with Virtual Diagnostics

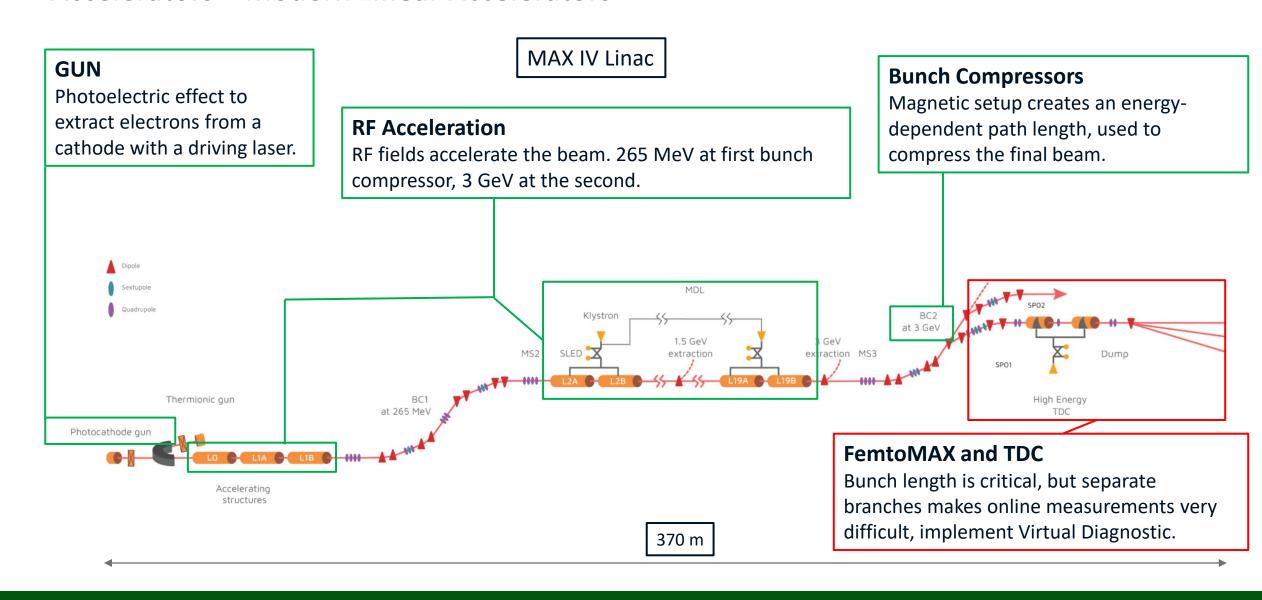
Johan Lundquist, Synchrotron Radiation Research, Lund University 20/08/2025

PhD Supervisors: Francesca Curbis, Sverker Werin, Erik Mansten

Overview

- Introduction
 - Linear Accelerators
 - Transverse Deflectors
 - Virtual Diagnostics
- MAX IV Virtual Diagnostic
- Multi-Facility Application
- Conclusion

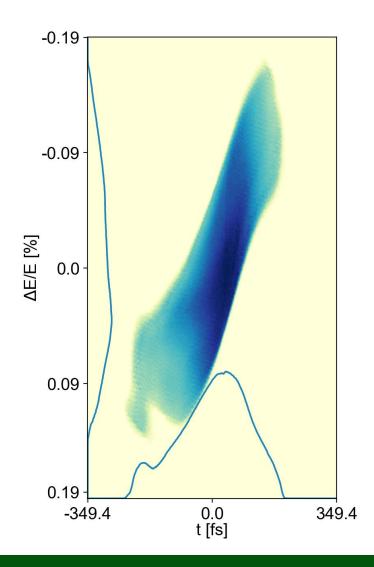
Accelerators – Modern Linear Accelerators



Accelerators – Transverse Deflecting Cavities

1. David Olsson. "Design and Implementation of RF Kickers in PhD thesis. Sept. 2017. 2. **Dipole** Beam Screen

Result: Longitudinal Phase Space



LPS Virtual Diagnostic – Motivation

- A full longitudinal understanding of the beam is often critical for Linac and FEL operations
- TDC usually provides a destructive measurement, disruptive to delivery of beam to users
- MAX IV has separate branch for TDC, can not measure LPS quickly during delivery

- A Virtual Diagnostic (VD) would allow online measurement of LPS
- VD could be used for operations and feedback during delivery

LPS Virtual Diagnostic – Experimental Setup

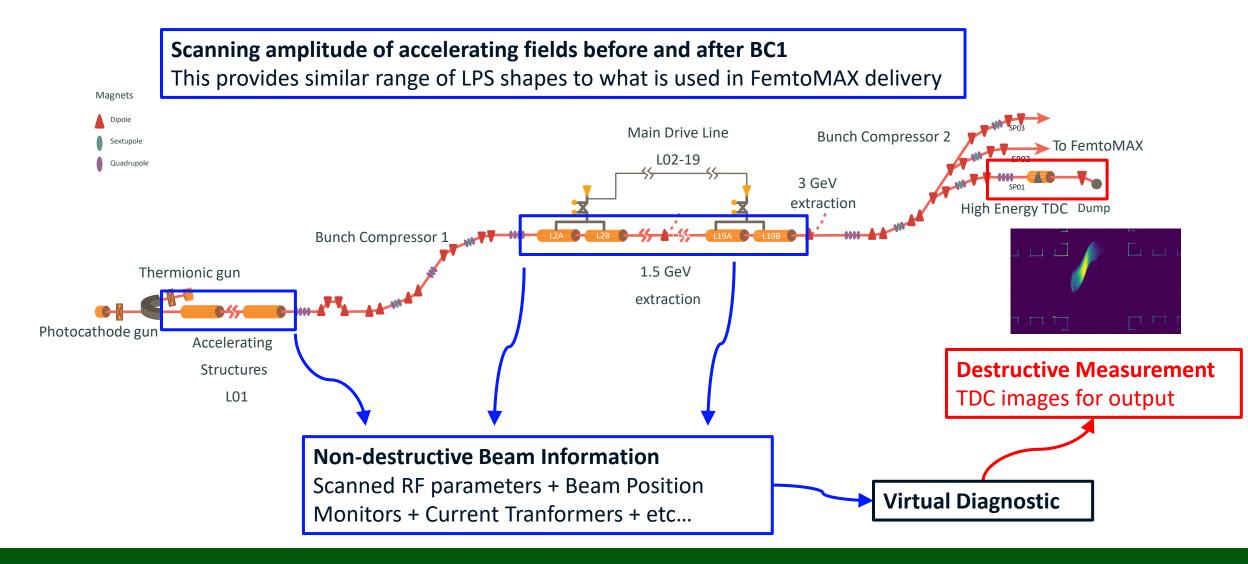
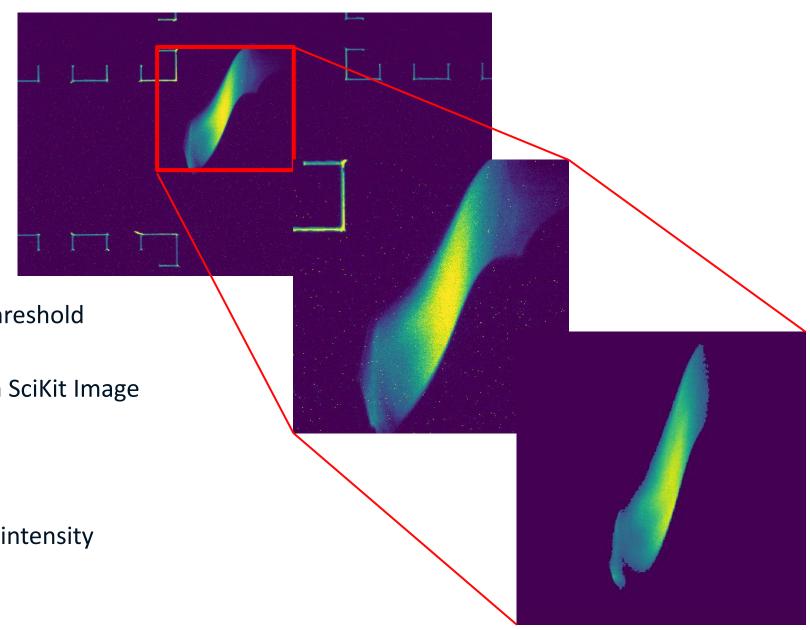


Image Preparation

- Background subtraction, negative pixels to 0
- 3x3 Median filter
- Region slice based on Otsu threshold
- Using Region Properties from SciKit Image
- Zero outside relevant region
- 650x650 output, Normalized intensity



Network Structure and Training

- 9000 images collected, ~6 hour beamtime
 - HDF5 set with 9000x650x650 images + 108 input params
 -> 28 GB of data
 - 90/10% Train/Test Split
- Dense Net + CNN trained with ADAM and MAE
 - Used scheduled learning rate and checkpoints for early stopping
 - Post-processing: Alignment using cross-correlation
- Large image size layer
 - Extends training time
 - Required for full LPS images
- Networks trained on LUNARC HPC Cluster
 - Training time on Nvidia A100 ~10 minutes
 - Training time on Laptop CPU ~1-2 hours

Input Vector

100 Dense Nodes

Batch Normalization
100 Dense Nodes

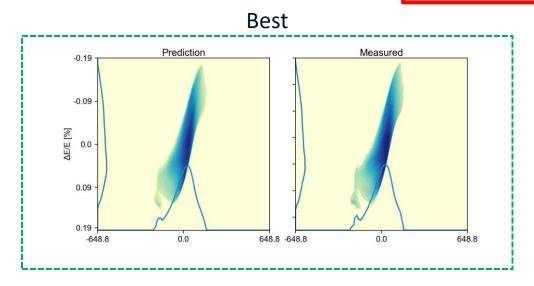
422 500 Dense Nodes

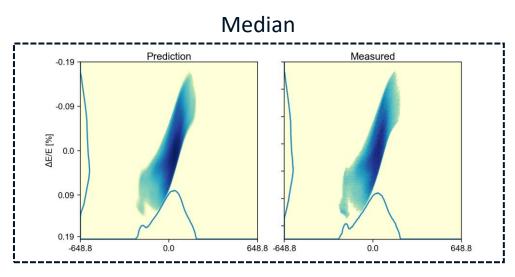
4*4x4 Convolutional Kernels

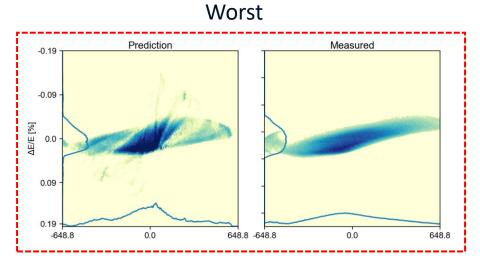
1*5x5 Convolutional Kernels

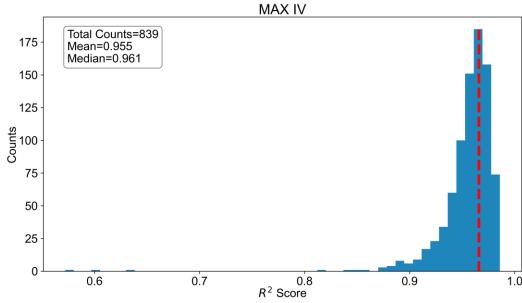
MAX IV – LPS Predictions

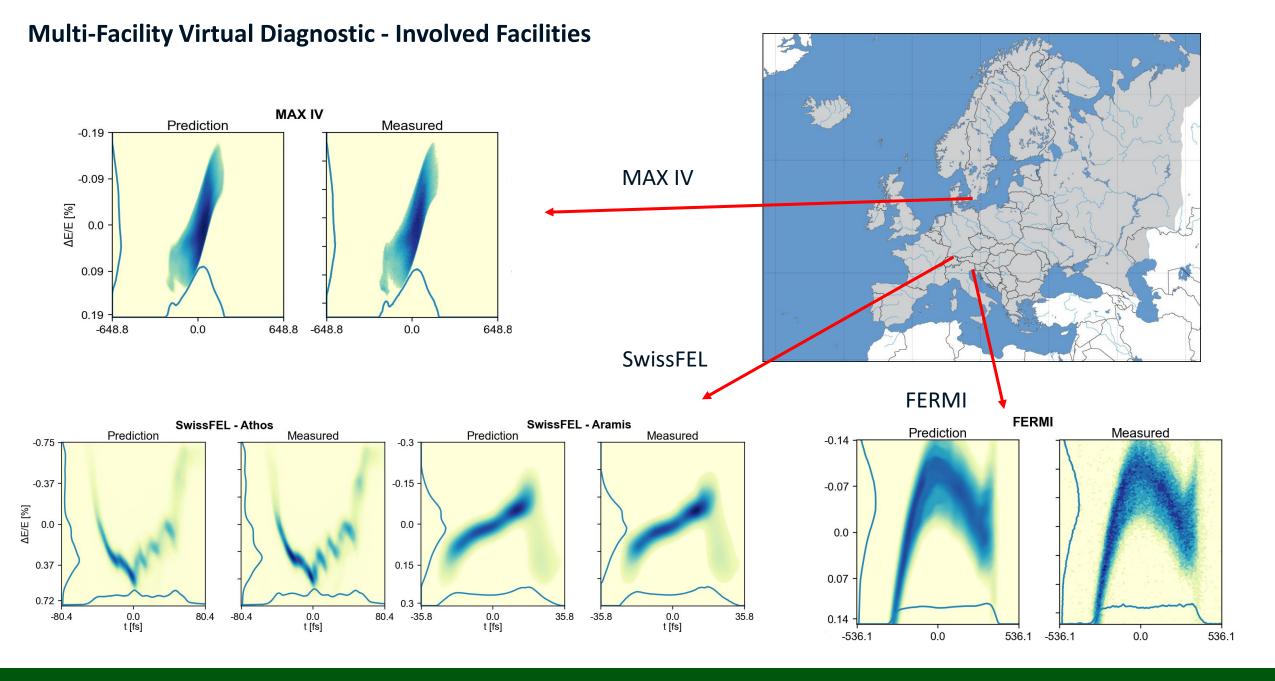
R²: Mean = 95.5%, Median = 96.1%





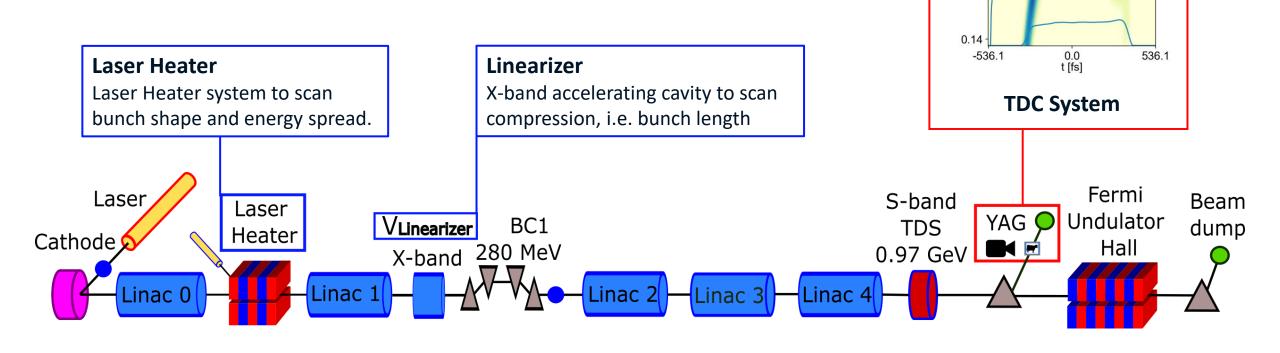






FERMI – Experimental Setup and Data

- Single Bunch Compressor (BC1) -->
 Required another scan parameter (Laser Heater)
- Data: 3870x230x320 images + 97 input parameters -> 2.13 GB



-0.14

-0.07

0.07

ΔΕ/Ε [%]

SwissFEL - Experimental Setup and Data

Simultaneous acquisition from two different TDC systems during the same scan

Data

Laser 2

Cathode

Athos: 1750x300x750 images + 41 input parameters -> 3.07 GB

Aramis: 1750x250x600 images + 41 input parameters -> 2.05 GB

Accelerating Structures

 Φ_{L1}

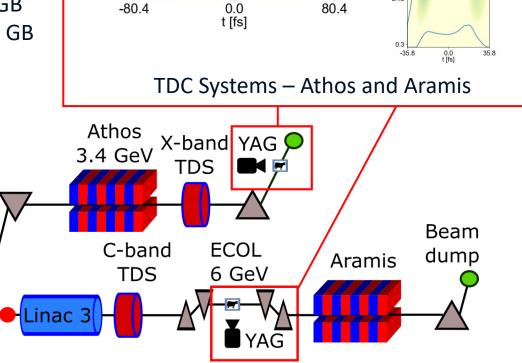
Phase scan of different accelerating

BC2

2.2 GeV

Switchyard

sections provided LPS variations



-0.75

0.0

0.72

AE/E [%]

Laser :

 ϕ_{inj}

Injector

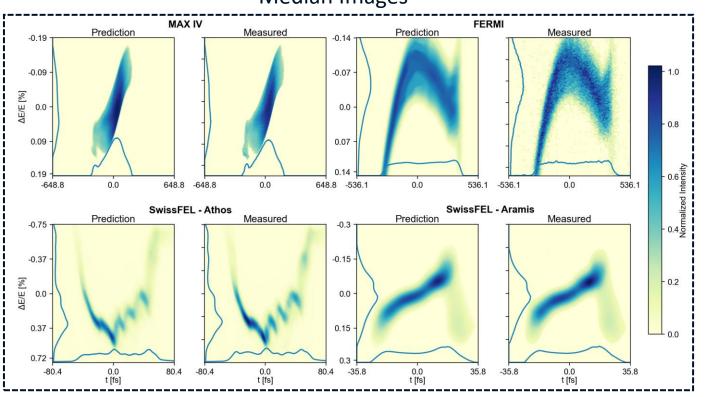
BC₁

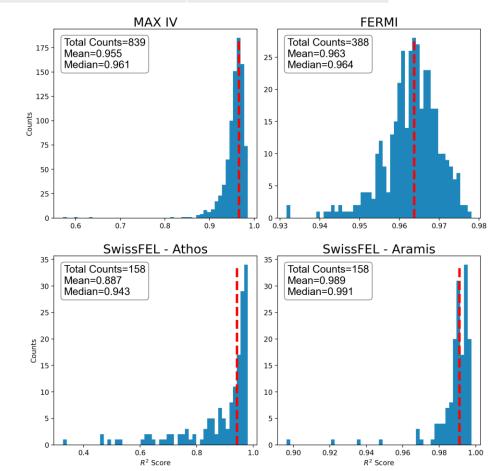
300 MeV

Multi-Facility Virtual Diagnostic – Final Results

R^2	MAX IV	FERMI	SwissFEL - Athos	SwissFEL - Aramis
Median	96.1%	96.4%	94.3%	99.1%
Mean	95.5%	96.3%	88.7%	98.9%

Median Images





Outlook

- Further developments for each facility:
 - MAX IV: Predictions with increased resolution using high-resolution simulations in training data.
 - SwissFEL: Lasing predictions, predicting the profile of the X-Ray pulses.
 - FERMI: Predictions at different energies, 0.97 GeV and 1.1 GeV complete and ready for training.
- General VD development:
 - Usability in controlrooms and daily operations.
 - Feedbacks on LPS shapes, constant online control.

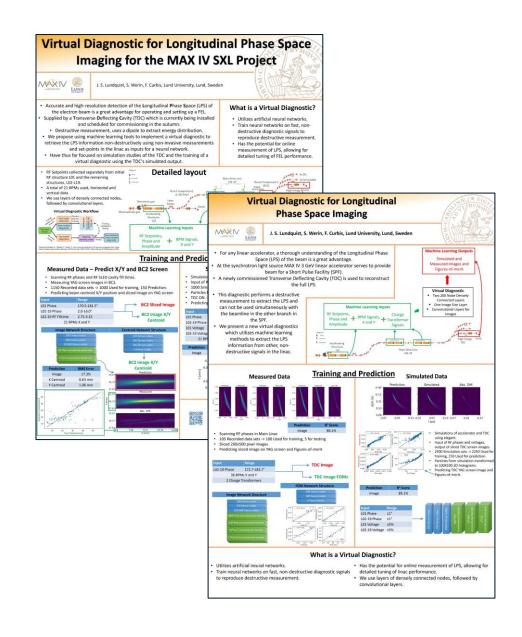
Thank you!

Proceedings articles:

- J. Lundquist, S. Werin, and F. Curbis. "Virtual Diagnostic for Longitudinal Phase Space Imaging for the MAX IV SXL Project". English. In: *Proc. FEL2022* (Trieste). International Free Electron Laser Conference 40. JACoW Publishing, Geneva, Switzerland, Aug. 2022, pp. 437–440. ISBN: 978-3-95450-220-2. DOI: 10.18429/JACoW-FEL2022-WEP25. URL: https://indico.jacow.org/event/44/contributions/420.
- J. Lundquist, F. Curbis, and S. Werin. "Virtual diagnostics for longitudinal phase space imaging". In: *Proc. IPAC'23* (Venice, Italy). International Particle Accelerator Conference 14. JACoW Publishing, Geneva, Switzerland, Sept. 2023, pp. 4471–4474. ISBN: 978-3-95-450231-8. DOI: 10.18429/JACoW-IPAC2023-THPL022.

Manuscript recently submitted to Physical Review Accelerators and Beams:

"Multi-Facility Virtual Diagnostics for Longitudinal Phase Space Predictions"



Network Hyperparameters

Category	Parameter	Value	Description 🗇
Data	Train/Test Split	0.9 test size	90% test, 10% train after cleaning
	Shuffle	True	Randomize before split
	Random State	1	Seed for reproducibility
Model Architecture	Layer 1	Dense(100, activation='relu')	Fully connected layer
	Layer 2	BatchNormalization()	Normalize activations
	Layer 3	Dense(100, activation='relu')	Fully connected layer
	Layer 4	Dense(np.prod(im_shape))	Output to match flattened image size
	Reshape 1	(im_shape[0]/2, im_shape[1]/2, 4)	Reduce spatial resolution, add channels
	Conv2D 1	4 filters, (4×4), relu, same	Convolution layer
	Reshape 2	(im_shape[0], im_shape[1], 1)	Restore image size
	Conv2D 2	1 filter, (5×5), relu, same	Output convolution

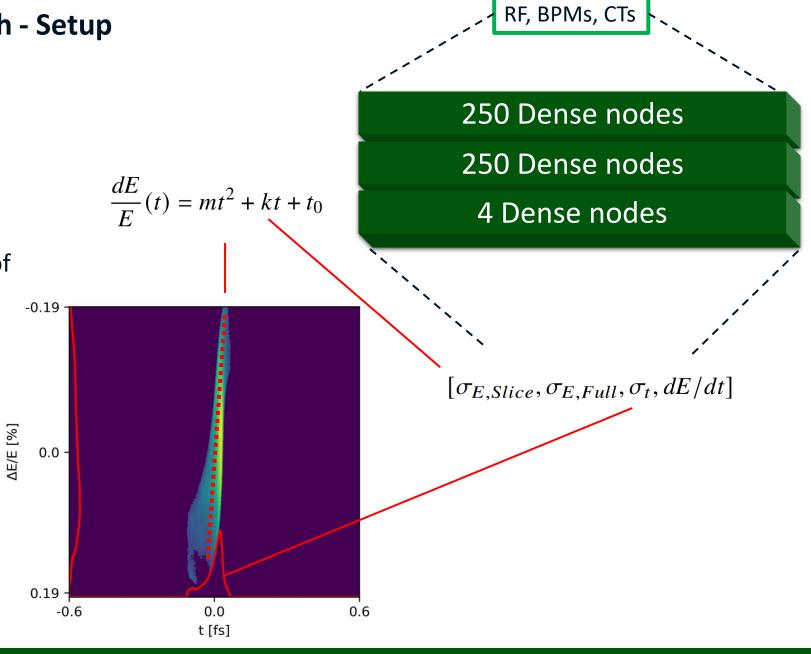
Training	Optimizer	Adam (legacy)	Adaptive optimizer
	Learning Rate	1.5 × 10 ⁻²	Initial step size
	Clip Norm	1	Gradient clipping norm
	Loss Function	MAE	Mean Absolute Error
	Batch Size (train)	32	Mini-batch size
	Batch Size (no-train mode)	5000	Used if trainb=False
	Epochs	40 (train), 1 (no-train)	Training iterations
	Validation Split	0.01	For monitoring val_loss
Callbacks	ModelCheckpoint	Save best weights (val_loss)	Monitors validation loss
	LearningRateScheduler	decay_rate=0.5, decay_step=10	Halves LR every 10 epochs
Custom Metrics	mssim2	inverse mean SSIM	Image similarity metric
Post-processing	Image Alignment	2D cross-correlation + shift	Align predictions to measurements

Beam Parameter Approach - Setup

 Computationally heavy to predict full LPS images, perhaps unnecessary

Predict beam parameters of interest instead

RMS in both planes and energetic chirp



Beam Parameter Approach - Results

