Machine learning for analytic calculations in theoretical physics

Matthias Wilhelm, University of Southern Denmark

HAMLET Physics 2025 August 20th, 2025

[2502.05121] with M. von Hippel see also [2502.09544] by Song, Yang, Cao, Luo, Zhu see also [2504.16045] by M. Zeng work in progress with J. Berman, F. Charton and M. Zeng

Table of contents

- Introduction
- Physics context
- Machine-learning approaches
 - Funsearch
 - Strongly-typed genetic programming
- 4 Conclusion and Outlook

ML for analytic calculations in theoretical physics

Typical machine learning applications: Noisy numeric real-world data

Theoretical physics: Exact analytic calculations

ML for analytic calculations in theoretical physics

Typical machine learning applications: Noisy numeric real-world data

Theoretical physics: Exact analytic calculations

Solutions hard to calculate but easy to check

⇒ Case for **Machine Learning**

ML for analytic calculations in theoretical physics

Typical machine learning applications: Noisy numeric real-world data

Theoretical physics: Exact analytic calculations

Solutions hard to calculate but easy to check

⇒ Case for Machine Learning

Examples

Symbol bootstrap

[Cai, Charton, Cranmer, Dixon, Merz, Nolte, MW (2024)]

ightarrow My talk at HAMLET Physics 2024

- Spinor-helicity simplifications [Cheung, Dersy, Schwartz (2024)]
- Integration-by-parts reduction
 [Hippel, MW (2025)], [Song, Yang, Cao, Luo, Zhu (2025)], [Zeng (2025)] → this talk

Alternative title: ML for Linear Algebra

Alternative title: ML for Linear Algebra

Why? Isn't ML harder than Linear Algebra?

Alternative title: ML for Linear Algebra

Why? Isn't ML harder than Linear Algebra?

Problem: Given a large set S of redundant linear equations, pick a small subset $s \subset S$ that still allows to uniquely solve for a given set of unknowns

Alternative title: ML for Linear Algebra

Why? Isn't ML harder than Linear Algebra?

Problem: Given a large set S of redundant linear equations, pick a small subset $s \subset S$ that still allows to uniquely solve for a given set of unknowns

Challenge: $|\{s \subset S\}| = 2^{|S|} \rightarrow \text{Heuristics} \rightarrow \text{ML}$

Table of contents

Introduction

2 Physics context

- Machine-learning approaches
 - Funsearch
 - Strongly-typed genetic programming
- Conclusion and Outlook

Fundamental Physics

Aim: Understand fundamental constituents of matter & interactions!

New experiments \Rightarrow Need for high-precision theory predictions!

Fundamental Physics

Aim: Understand fundamental constituents of matter & interactions!

New experiments ⇒ Need for high-precision theory predictions!

Theoretical framework:

Quantum Field Theory = Special relativity + Quantum Mechanics

What is integration-by-parts (IBP) reduction?


```
What is integration-by-parts (IBP) reduction?
```

 $\langle \mathsf{Feynman} \; \mathsf{integrals} \rangle = \mathsf{vector} \; \mathsf{space} \; \mathsf{of} \; \mathsf{finite} \; \mathsf{dimension}$

[Smirnov, Petukhov (2010)]

 $\Rightarrow \exists$ finite basis $\{I_1, \dots, I_N\}$ a.k.a. master integrals

What is integration-by-parts (IBP) reduction?

 $\langle \mathsf{Feynman\ integrals} \rangle = \mathsf{vector\ space\ of\ finite\ dimension}$

[Smirnov, Petukhov (2010)]

- $\Rightarrow \exists$ finite basis $\{I_1, \dots, I_N\}$ a.k.a. master integrals
- \Rightarrow Decompose $I = \sum_{i=1}^{N} c_i I_i$

What is integration-by-parts (IBP) reduction?

 $\langle Feynman integrals \rangle = vector space of finite dimension$

[Smirnov, Petukhov (2010)]

- $\Rightarrow \exists$ finite basis $\{I_1, \dots, I_N\}$ a.k.a. master integrals
- \Rightarrow Decompose $I = \sum_{i=1}^{N} c_i I_i$

Bottle neck of many calculations!

e.g. 300k CPU hours [Driesse, Jakobsen, Mogull, Plefka, Sauer, Usovitsch (2024)]

Feynman integrals and IBP identities

General family of Feynman integrals

$$I_{a_1,...,a_n} = \int \frac{\prod_{l=1}^{L} d^D k_l}{\prod_{i=1}^{n} [D_i(k_1^{\mu},...,k_L^{\mu})]^{a_i}}$$

where $a_i \in \mathbb{Z}$, $L \in \mathbb{N}$, $k_l \in \mathbb{R}^D$, $\mu = 1, \dots, D$ and D_i polynomials

Feynman integrals and IBP identities

General family of Feynman integrals

$$I_{a_1,...,a_n} = \int \frac{\prod_{l=1}^{L} d^D k_l}{\prod_{i=1}^{n} [D_i(k_1^{\mu},...,k_{\underline{L}}^{\mu})]^{a_i}}$$

where $a_i \in \mathbb{Z}$, $L \in \mathbb{N}$, $k_l \in \mathbb{R}^D$, $\mu = 1, \dots, D$ and D_i polynomials

Integration-by-part identities [Chetyrkin, Tkachov (1981)]

$$0 = \int \prod_{i=1}^{L} d^{D} k_{i} \sum_{\mu=1}^{D} \frac{d}{dk_{I}^{\mu}} \frac{q^{\mu}}{\prod_{i=1}^{n} D_{i}^{a_{i}}} = \text{linear combination of } I_{a'_{1}, \dots a'_{n}}$$

for any $q \in \mathbb{R}^D$ with $a_i' = a_i, a_i \pm 1$

Feynman integrals and IBP identities

General family of Feynman integrals

$$I_{a_1,...,a_n} = \int \frac{\prod_{l=1}^{L} d^D k_l}{\prod_{i=1}^{n} [D_i(k_1^{\mu},...,k_{\underline{L}}^{\mu})]^{a_i}}$$

where $a_i \in \mathbb{Z}$, $L \in \mathbb{N}$, $k_l \in \mathbb{R}^D$, $\mu = 1, ..., D$ and D_i polynomials

Integration-by-part identities [Chetyrkin, Tkachov (1981)]

$$0 = \int \prod_{i=1}^{L} d^{D} k_{i} \sum_{\mu=1}^{D} \frac{d}{dk_{I}^{\mu}} \frac{q^{\mu}}{\prod_{i=1}^{n} D_{i}^{a_{i}}} = \text{linear combination of } I_{a'_{1}, \dots a'_{n}}$$

for any $q \in \mathbb{R}^D$ with $a_i' = a_i, a_i \pm 1$

Integration-by-part identities can't be solved for generic a_i \to specify to particular values $S \subset \mathbb{Z}^n$ and solve via Laporta's algorithm [Laporta (2000)]

Integral family example: Bubble integral

$$I_{a_1,a_2} = \int \frac{d^D k}{(k^2 - m^2)^{a_1} [(p - k)^2]^{a_2}}$$

with $p \in \mathbb{R}^D$, $m \in \mathbb{R}$

Integral family example: Bubble integral

$$I_{a_1,a_2} = \int \frac{d^D k}{(k^2 - m^2)^{a_1} [(p - k)^2]^{a_2}}$$

with $p \in \mathbb{R}^D$, $m \in \mathbb{R}$

Integration-by-part identities for q = p, k:

$$0 = (D - 2a_1 - a_2)I_{a_1, a_2} - 2a_1m^2I_{a_1+1, a_2} - a_2(m^2 - p^2)I_{a_1, a_2+1} - a_2I_{a_1-1, a_2+1}$$

$$0 = (a_2 - a_1)I_{a_1, a_2} - a_1(m^2 + p^2)I_{a_1 + 1, a_2} - a_2(m^2 - p^2)I_{a_1, a_2 + 1} - a_2I_{a_1 - 1, a_2 + 1} + a_1I_{a_1 + 1, a_2 - 1}$$

Integral family example: Bubble integral

$$I_{a_1,a_2} = \int \frac{d^D k}{(k^2 - m^2)^{a_1} [(p - k)^2]^{a_2}}$$

with $p \in \mathbb{R}^D$, $m \in \mathbb{R}$

Integration-by-part identities for q = p, k:

$$0 = (D-2a_1-a_2)I_{a_1,a_2} - 2a_1m^2I_{a_1+1,a_2} - a_2(m^2-p^2)I_{a_1,a_2+1} - a_2I_{a_1-1,a_2+1}$$

$$0 = (a_2-a_1)I_{a_1,a_2} - a_1(m^2+p^2)I_{a_1+1,a_2} - a_2(m^2-p^2)I_{a_1,a_2+1} - a_2I_{a_1-1,a_2+1} + a_1I_{a_1+1,a_2-1}$$

Possible master integrals $I_{1,1}$, $I_{2,0}$

Integral family example: Bubble integral

$$I_{a_1,a_2} = \int \frac{d^D k}{(k^2 - m^2)^{a_1} [(p - k)^2]^{a_2}}$$

with $p \in \mathbb{R}^D$, $m \in \mathbb{R}$

Integration-by-part identities for q = p, k:

$$0 = (D - 2a_1 - a_2)I_{a_1, a_2} - 2a_1m^2I_{a_1+1, a_2} - a_2(m^2 - p^2)I_{a_1, a_2+1} - a_2I_{a_1-1, a_2+1}$$

$$0 = (a_2 - a_1)I_{a_1, a_2} - a_1(m^2 + p^2)I_{a_1+1, a_2} - a_2(m^2 - p^2)I_{a_1, a_2+1} - a_2I_{a_1-1, a_2+1} + a_1I_{a_1+1, a_2-1}$$

Possible master integrals $I_{1,1}$, $I_{2,0}$

Task: IBP reduce $I_{2,1}$

Integral family example: Bubble integral

$$I_{a_1,a_2} = \int \frac{d^D k}{(k^2 - m^2)^{a_1} [(p - k)^2]^{a_2}}$$

with $p \in \mathbb{R}^D$, $m \in \mathbb{R}$

Integration-by-part identities for q = p, k:

$$0 = (D-2a_1-a_2)I_{a_1,a_2} - 2a_1m^2I_{a_1+1,a_2} - a_2(m^2-p^2)I_{a_1,a_2+1} - a_2I_{a_1-1,a_2+1}$$

$$0 = (a_2-a_1)I_{a_1,a_2} - a_1(m^2+p^2)I_{a_1+1,a_2} - a_2(m^2-p^2)I_{a_1,a_2+1} - a_2I_{a_1-1,a_2+1} + a_1I_{a_1+1,a_2-1}$$

Possible master integrals $I_{1,1}$, $I_{2,0}$

Task: IBP reduce $I_{2,1}$

Solution: Picking $a_1 = a_2 = 1$ above $\Rightarrow I_{2,1} = \frac{D-3}{m^2-p^2}I_{1,1} - \frac{1}{m^2-p^2}I_{2,0}$

Integral family example: Bubble integral

$$I_{a_1,a_2} = \int \frac{d^D k}{(k^2 - m^2)^{a_1} [(p - k)^2]^{a_2}}$$

with $p \in \mathbb{R}^D$, $m \in \mathbb{R}$

Integration-by-part identities for q = p, k:

$$0 = (D - 2a_1 - a_2)I_{a_1, a_2} - 2a_1m^2I_{a_1+1, a_2} - a_2(m^2 - p^2)I_{a_1, a_2+1} - a_2I_{a_1-1, a_2+1}$$

$$0 = (a_2 - a_1)I_{a_1, a_2} - a_1(m^2 + p^2)I_{a_1 + 1, a_2} - a_2(m^2 - p^2)I_{a_1, a_2 + 1} - a_2I_{a_1 - 1, a_2 + 1} + a_1I_{a_1 + 1, a_2 - 1}$$

Possible master integrals $I_{1,1}$, $I_{2,0}$

Task: IBP reduce $I_{2,1}$

Solution: Picking $a_1 = a_2 = 1$ above $\Rightarrow l_{2,1} = \frac{D-3}{m^2-p^2} l_{1,1} - \frac{1}{m^2-p^2} l_{2,0}$

Homework: IBP reduce I_{5.5}

Seeding strategies

How to choose seeds? Heuristics!

Define for $(a_1, \ldots, a_n) \in \mathbb{Z}^n$:

$$t \equiv \sum_{a_i > 0} 1$$
, $r \equiv \sum_{a_i > 0} a_i$, $d \equiv r - t$, $s \equiv -\sum_{a_i < 0} a_i$

Rectangular Seeding: $S_1 = \{(a_1, \dots, a_n) \in \mathbb{Z}^n | r \le r_{\max} \land s \le s_{\max}\}$ w/ parameters r_{\max}, s_{\max}

Golden Rule: $S_2=\{(a_1,\ldots,a_n)\in S_1|d\leq d_{\max}\}$ w/ parameter d_{\max} [Laporta (2000)] Homework: IBP reduce $I_{5,5}\to S_1=S_2=\{(a_1,a_2)\in\mathbb{Z}^2|r<9\land s<0\}$

10/2

Seeding strategies

How to choose seeds? Heuristics!

Define for $(a_1, \ldots, a_n) \in \mathbb{Z}^n$:

$$t \equiv \sum_{a_i > 0} 1$$
, $r \equiv \sum_{a_i > 0} a_i$, $d \equiv r - t$, $s \equiv -\sum_{a_i < 0} a_i$

Rectangular Seeding: $S_1 = \{(a_1, \dots, a_n) \in \mathbb{Z}^n | r \le r_{\max} \land s \le s_{\max} \}$ w/ parameters r_{\max}, s_{\max}

Golden Rule: $S_2=\{(a_1,\ldots,a_n)\in S_1|d\leq d_{\max}\}$ w/ parameter d_{\max} [Laporta (2000)] Homework: IBP reduce $I_{5,5}\to S_1=S_2=\{(a_1,a_2)\in\mathbb{Z}^2|r\leq 9\land s\leq 0\}$

Improved Seeding: $S_3 = \{(a_1, \ldots, a_n) \in S_2 | s \le t - l + 1\}$ w/ parameter l

⇒ Order of magnitude improvements in number of seeds and time!

[Usovitsch (talk in 2023)]

Idea: Use ML to discover better heuristics for picking seeds $s \subset S$

Table of contents

Introduction

2 Physics context

- Machine-learning approaches
 - Funsearch
 - Strongly-typed genetic programming

Conclusion and Outlook

Table of contents

Introduction

2 Physics context

- Machine-learning approaches
 - Funsearch
 - Strongly-typed genetic programming
- Conclusion and Outlook

What is funsearch?

funsearch [Romera-Paredes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg, Wang, Fawzi, Kohli, Fawzi (2023)]

Solving problems by automated brainstorming

Funsearch in a nutshell

Funsearch in a nutshell

* As python code, so I can check how good it is

Funsearch in a nutshell

- * As python code, so I can check how good it is
- † Given those two solutions from earlier already that worked pretty well

Funsearch in slightly longer

[Romera-Paredes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg, Wang, Fawzi, Kohli, Fawzi (2023)]

Properties of funsearch

Some properties:

- Variant of genetic programming, but unconstrained
- Output is python code
- \Rightarrow interpretable
- ⇒ generalizable

[Romera-Paredes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg, Wang, Fawzi, Kohli, Fawzi (2023)]

Properties of funsearch

Some properties:

- Variant of genetic programming, but unconstrained
- Output is python code
- \Rightarrow interpretable
- ⇒ generalizable

[Romera-Paredes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg, Wang, Fawzi, Kohli, Fawzi (2023)]

Fitness

ullet Gauß elimination $\mathcal{O}(|s|^3) o \mathsf{less}$ seeds is better

• Fitness
$$=$$
 $\begin{cases} -|s| & \text{if } \exists \text{ solution} \\ -|s|-|S| & \text{if } \nexists \text{ solution} \end{cases}$ [von Hippel, MW (2025)]

Properties of funsearch

Some properties:

- Variant of genetic programming, but unconstrained
- Output is python code
- \Rightarrow interpretable
- ⇒ generalizable

[Romera-Paredes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg, Wang, Fawzi, Kohli, Fawzi (2023)]

Fitness

ullet Gauß elimination $\mathcal{O}(|s|^3)
ightarrow$ less seeds is better

• Fitness
$$= \begin{cases} -|s| & \text{if } \exists \text{ solution} \\ -|s| - |S| & \text{if } \nexists \text{ solution} \end{cases}$$
 [von Hippel, MW (2025)]

ullet Sparse o Refined fitness = # element-wise operations [Zeng (2025)]

Experiment with funsearch

Starting point corresponding to a golden rule system with $d_{max} = 1$:

```
priority(a list: list[int]) -> bool:
"""Decides whether to include the seed a list in the ibp system.
  Returns True or False."""
len alist=len(a list)
#Number of propagators, which are entries in a list greater than zero
num props=sum(map(lambda x: 1 if x>0 else 0,a list))
numerators=sum(map(lambda x: 1 if x<0 else 0.a list))
#Dots, the sum of all entries in a list greater than one
dots=sum(map(lambda x: x-1 if x>1 else 0,a_list))
#The simplest choice: if there is more than one dot, exclude the seed
if dots>1:
 return False
 return True
```

 \Rightarrow 2,148 seeds

Experimental results

```
After 2,400 generation: 2,148 seeds \rightarrow 92 seeds \stackrel{\frown}{=} improved seeding strategy with d_{\rm max}=0 and l=4 \Rightarrow Rediscovered state of the art!
```

Experimental results

```
After 2,400 generation: 2,148 seeds \rightarrow 92 seeds \cong improved seeding strategy with d_{\max} = 0 and l = 4 \Rightarrow Rediscovered state of the art!

After 3,800 generation: 2,148 seeds \rightarrow 88 seeds \cong improved seeding strategy + t \ge 4 \Rightarrow Improvement on state of the art!

[von Hippel, MW (2025)]
```

Table of contents

Introduction

2 Physics context

- Machine-learning approaches
 - Funsearch
 - Strongly-typed genetic programming
- 4 Conclusion and Outlook

Funsearch: unconstrained + slow \rightarrow Exploration

Funsearch: unconstrained + slow \rightarrow Exploration

Classic genetic programming: constrained + fast \rightarrow Exploitation e.g. [Distributed Evolutionary Algorithms in Python (DEAP)]

Funsearch: unconstrained + slow \rightarrow Exploration

Classic genetic programming: constrained + fast \rightarrow Exploitation e.g. [Distributed Evolutionary Algorithms in Python (DEAP)]

Syntax trees

```
def func(arg1, arg2):
    return arg1>0 and arg2<arg1+3</pre>
```


Funsearch: unconstrained + slow \rightarrow Exploration

Classic genetic programming: constrained + fast \rightarrow Exploitation e.g. [Distributed Evolutionary Algorithms in Python (DEAP)]

Syntax trees

3+True Nonsense ⇒ Strongly typed genetic programming

Strongly typed genetic programming

Evolving trees = grafting

Strongly typed genetic programming

Evolving trees = grafting

Cross-over Replace random sub-tree by random sub-tree of another tree Mutation Replace random sub-tree by random new sub-tree

Strongly typed genetic programming

Evolving trees = grafting

Cross-over Replace random sub-tree by random sub-tree of another tree Mutation Replace random sub-tree by random new sub-tree

Building blocks

- Arguments built from $(a_1, \ldots, a_n) \in \mathbb{Z}$: $\sum_{a_i > 0} a_i$, $\sum_{a_i > 1} a_i$, $-\sum_{a_i < 0} a_i$, $\sum_{a_i} a_i$, $\sum_{a_i > 0} 1$, $\sum_{a_i > 1} 1$, $\sum_{a_i < 0} 1$, $\sum_{a_i = 0} 1$, $\sum_{a_i = 1} 1$, n
- Primitives: and, >, <, =, +, -
- Terminal elements: True, r_{max} , s_{max} , $-10, \ldots, +10$

Experimental results

- After 18 generation: 2,148 seeds \rightarrow 88 seeds
- $\hat{}$ improved seeding strategy + $t \ge 4$
- ⇒ Same result as funsearch but faster!

Experimental results

- After 18 generation: 2,148 seeds \rightarrow 88 seeds
- $\hat{}$ improved seeding strategy $+ t \ge 4$
- ⇒ Same result as funsearch but faster!

Table of contents

Introduction

2 Physics context

- Machine-learning approaches
 - Funsearch
 - Strongly-typed genetic programming
- 4 Conclusion and Outlook

Conclusion

Bottle neck for analytic calculations in theoretical physics:

IBP reductions

- **Challenge:** Pick set $s \subset S$ of linear equations
- ML approach:
 - funsearch

• strongly typed genetic programming

 \Rightarrow Improvement over state of the art \Rightarrow **Proof of principle!**

Outlook

- funsearch → AlphaEvolve
 [Novikov,Vü,Eisenberger,Dupont,Huang,Wagner,Shirobokov,Kozlovskii et al. (2025)]
- Gamification → RL
 [Zeng (2025)], [Berman, Charton, MW, Zeng (in progress)]

- Generalization & Deployment
 - Interpret ⇒ Deploy analytic seeding strategy
 - Finite field techniques \rightarrow Training budget of 10^5-10^6 runs \Rightarrow Deploy ML
- ..

Outlook

- funsearch → AlphaEvolve
 [Novikov,Vü,Eisenberger,Dupont,Huang,Wagner,Shirobokov,Kozlovskii et al. (2025)]
- Gamification → RL
 [Zeng (2025)], [Berman, Charton, MW, Zeng (in progress)]

- Generalization & Deployment
 - Interpret ⇒ Deploy analytic seeding strategy
 - Finite field techniques \rightarrow Training budget of 10^5-10^6 runs \Rightarrow Deploy ML

• ..

Thank you!

Back-up slide: Generalization & Deployment

Option A

Interpretable ⇒ **Deploy analytic seeding strategy**

• $t \ge 4$ [von Hippel, MW (2025)]

Back-up slide: Generalization & Deployment

Option A

Interpretable ⇒ **Deploy analytic seeding strategy**

• $t \ge 4$ [von Hippel, MW (2025)]

Option B

Finite field techniques [von Manteuffel, Schabinger (2014)], [Peraro (2016)]

- Run for $D, m_i, s_{ij} \in \mathbb{F}_p$
- Reconstructs rational dependence on D, m_i, s_{ij}
- \rightarrow Training budget of $10^5 10^6$ runs \Rightarrow **Deploy ML**