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ML for analytic calculations in theoretical physics
Typical machine learning applications: Noisy numeric real-world data

Theoretical physics: Exact analytic calculations

Solutions hard to calculate but easy to check
⇒ Case for Machine Learning

Examples
Symbol bootstrap
[Cai, Charton, Cranmer, Dixon, Merz, Nolte, MW (2024)]
→ My talk at HAMLET Physics 2024

Spinor-helicity simplifications [Cheung, Dersy, Schwartz (2024)]

Integration-by-parts reduction
[Hippel, MW (2025)], [Song, Yang, Cao, Luo, Zhu (2025)], [Zeng (2025)] → this talk
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The problem in a nutshell

Alternative title: ML for Linear Algebra

Why? Isn’t ML harder than Linear Algebra?

Problem: Given a large set S of redundant linear equations, pick a small
subset s ⊂ S that still allows to uniquely solve for a given set of
unknowns

Challenge: |{s ⊂ S}| = 2|S| → Heuristics → ML
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Fundamental Physics

Aim: Understand fundamental constituents of matter & interactions!

Image: ATLAS Image: NASA/Goddard Space Flight Center

New experiments ⇒ Need for high-precision theory predictions!

Theoretical framework:
Quantum Field Theory = Special relativity + Quantum Mechanics
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Pipeline for calculating precision predictions

Feynman
diagrams

Feynman
integrals

Master
integrals Predictions

∼ 105 ∼ 102

IBP
reduction

What is integration-by-parts (IBP) reduction?
〈Feynman integrals〉 = vector space of finite dimension

[Smirnov, Petukhov (2010)]
⇒ ∃ finite basis {I1, . . . , IN} a.k.a. master integrals
⇒ Decompose I =

∑N
i=1 ci Ii

Bottle neck of many calculations!
e.g. 300k CPU hours [Driesse, Jakobsen, Mogull, Plefka, Sauer, Usovitsch (2024)]
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Feynman integrals and IBP identities

General family of Feynman integrals

Ia1,...,an =

∫ ∏L
l=1 dDk l∏n

i=1[Di(kµ
1 , . . . , k

µ
L )]

ai

where ai ∈ Z, L ∈ N, k l ∈ RD , µ = 1, . . . ,D and Di polynomials

Integration-by-part identities [Chetyrkin, Tkachov (1981)]

0 =

∫ L∏
i=1

dDk i

D∑
µ=1

d
dkµ

l

qµ∏n
i=1 Di ai

= linear combination of Ia′
1,...a′

n

for any q ∈ RD with a′
i = ai , ai ± 1

Integration-by-part identities can’t be solved for generic ai
→ specify to particular values S ⊂ Zn and solve via Laporta’s algorithm

[Laporta (2000)]

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics
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A simple example
Integral family example: Bubble integral

Ia1,a2 =

∫ dDk
(k2 − m2)

a1 [(p − k)2]a2

with p ∈ RD , m ∈ R

Integration-by-part identities for q = p, k:

0 = (D−2a1−a2)Ia1,a2 − 2a1m2Ia1+1,a2 − a2(m2−p2)Ia1,a2+1 − a2Ia1−1,a2+1

0 = (a2−a1)Ia1,a2 − a1(m2+p2)Ia1+1,a2 − a2(m2−p2)Ia1,a2+1 − a2Ia1−1,a2+1

+ a1Ia1+1,a2−1

Possible master integrals I1,1, I2,0
Task: IBP reduce I2,1
Solution: Picking a1 = a2 = 1 above ⇒ I2,1 = D−3

m2−p2 I1,1 − 1
m2−p2 I2,0

Homework: IBP reduce I5,5

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics
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Seeding strategies

How to choose seeds? Heuristics!

Define for (a1, . . . , an) ∈ Zn:

t ≡
∑
ai>0

1 , r ≡
∑
ai>0

ai , d ≡ r − t , s ≡ −
∑
ai<0

ai

Rectangular Seeding: S1 = {(a1, . . . , an) ∈ Zn|r ≤ rmax ∧ s ≤ smax}
w/ parameters rmax, smax

Golden Rule: S2 = {(a1, . . . , an) ∈ S1|d ≤ dmax} w/ parameter dmax
[Laporta (2000)]

Homework: IBP reduce I5,5 → S1 = S2 = {(a1, a2) ∈ Z2|r ≤ 9 ∧ s ≤ 0}

Improved Seeding: S3 = {(a1, . . . , an) ∈ S2|s ≤ t − l + 1} w/ parameter l

⇒ Order of magnitude improvements in number of seeds and time!
[Usovitsch (talk in 2023)]

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics
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Idea

Idea: Use ML to discover better heuristics
for picking seeds s ⊂ S

*Always test using with a1, . . . , a7

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics
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What is funsearch?

funsearch [Romera-Paredes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg,
Wang, Fawzi, Kohli, Fawzi (2023)]

Solving problems by automated brainstorming

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics
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Funsearch in a nutshell

ChatGPT,
give me a
solution
to my

problem!∗†

Sure!

∗ As python code, so I can check how good it is
† Given those two solutions from earlier already that worked pretty well

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics
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Funsearch in slightly longer

[Romera-Paredes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg, Wang, Fawzi,
Kohli, Fawzi (2023)]

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics
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Properties of funsearch

Some properties:
Variant of genetic programming, but unconstrained
Output is python code

⇒ interpretable
⇒ generalizable

[Romera-Paredes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg, Wang, Fawzi,
Kohli, Fawzi (2023)]

Fitness
Gauß elimination O(|s|3) → less seeds is better

Fitness =
{
−|s| if ∃ solution
−|s| − |S| if @ solution

[von Hippel, MW (2025)]

Sparse → Refined fitness = # element-wise operations [Zeng (2025)]

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics
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Experiment with funsearch

Starting point corresponding to a golden rule system with dmax = 1:

⇒ 2,148 seeds [von Hippel, MW (2025)]

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics
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Experimental results

After 2,400 generation: 2,148 seeds → 92 seeds
=∧ improved seeding strategy with dmax = 0 and l = 4
⇒ Rediscovered state of the art!

After 3,800 generation: 2,148 seeds → 88 seeds
=∧ improved seeding strategy + t ≥ 4
⇒ Improvement on state of the art!

[von Hippel, MW (2025)]

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics
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Classic genetic programming

Funsearch: unconstrained + slow → Exploration

Classic genetic programming: constrained + fast → Exploitation
e.g. [Distributed Evolutionary Algorithms in Python (DEAP)]

Syntax trees

def func ( arg1 , arg2 ) :
return arg1>0 and arg2<arg1+3

and

> <

arg1 0 arg2 +

arg1 3

3+True Nonsense ⇒ Strongly typed genetic programming

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics
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Strongly typed genetic programming

Evolving trees = grafting

Image: nwtree.com

Cross-over Replace random sub-tree by random sub-tree of another tree
Mutation Replace random sub-tree by random new sub-tree

Building blocks
Arguments built from (a1, . . . , an) ∈ Z:

∑
ai>0 ai ,

∑
ai>1 ai ,

−
∑

ai<0 ai ,
∑

ai
ai ,

∑
ai>0 1,

∑
ai>1 1,

∑
ai<0 1,

∑
ai=0 1,

∑
ai=1 1, n

Primitives: and, >, <, =, +, −
Terminal elements: True, rmax, smax, −10, . . . ,+10
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Experimental results

After 18 generation: 2,148 seeds → 88 seeds
=∧ improved seeding strategy + t ≥ 4
⇒ Same result as funsearch but faster!

Final tree
>

−

−∑
ai>0 ai 0

+

+∑
ai>1 ai

∑
ai>1 ai

+

+

0
∑

ai>1 ai

+

+

+

+∑
ai>1 ai

∑
ai>1 ai

−
∑

ai<1 ai

∑
ai>1 ai

+

+

0
∑

ai>1 ai

+

+

0
∑

ai>1 ai

0

−

+

+∑
ai>1 ai −

+

+∑
ai>1 ai

∑
ai>1 ai

−

−∑
ai>1 ai

∑
ai

ai

−∑
ai<0 1

∑
ai>1 ai

−6

−

−∑
ai>1 ai

∑
ai

ai

−∑
ai

ai
∑

ai>1 ai

−6

[von Hippel, MW (2025)]
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Conclusion

Bottle neck for analytic calculations in theoretical physics:
IBP reductions

Image: ATLAS Image: NASA/Goddard Space Flight Center

Challenge: Pick set s ⊂ S of linear equations
ML approach:

funsearch

strongly typed genetic programming

⇒ Improvement over state of the art ⇒ Proof of principle!
[von Hippel, MW (2025)]
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Outlook

funsearch → AlphaEvolve
[Novikov,Vũ,Eisenberger,Dupont,Huang,Wagner,Shirobokov,Kozlovskii et al. (2025)]

Gamification → RL
[Zeng (2025)], [Berman, Charton, MW, Zeng (in progress)]

Generalization & Deployment
Interpret ⇒ Deploy analytic seeding strategy
Finite field techniques → Training budget of 105 − 106 runs
⇒ Deploy ML

…

Thank you!

Image: Road Travel America
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Back-up slide: Generalization & Deployment

Option A
Interpretable ⇒ Deploy analytic seeding strategy

t ≥ 4 [von Hippel, MW (2025)]

→

[Song, Yang, Cao, Luo, Zhu (2025)]

Option B
Finite field techniques [von Manteuffel, Schabinger (2014)], [Peraro (2016)]

Run for D,mi , sij ∈ Fp

Reconstructs rational dependence on D,mi , sij

→ Training budget of 105 − 106 runs ⇒ Deploy ML
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