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Theoretical physics: Exact analytic calculations
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ML for analytic calculations in theoretical physics

Typical machine learning applications: Noisy numeric real-world data
Theoretical physics: Exact analytic calculations

Solutions hard to calculate but easy to check
= Case for Machine Learning

Examples

@ Symbol bootstrap
[Cai, Charton, Cranmer, Dixon, Merz, Nolte, MW (2024)]
— My talk at HAMLET Physics 2024

@ Spinor-helicity simplifications [Cheung, Dersy, Schwartz (2024)]

@ Integration-by-parts reduction
[Hippel, MW (2025)], [Song, Yang, Cao, Luo, Zhu (2025)], [Zeng (2025)] — this talk
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Alternative title: ML for Linear Algebra
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The problem in a nutshell

Alternative title: ML for Linear Algebra

Why? Isn't ML harder than Linear Algebra? ,’l
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The problem in a nutshell

Alternative title: ML for Linear Algebra

Why? Isn't ML harder than Linear Algebra?

Problem: Given a large set S of redundant linear equations, pick a small
subset s C S that still allows to uniquely solve for a given set of
unknowns
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The problem in a nutshell

Alternative title: ML for Linear Algebra

Why? Isn't ML harder than Linear Algebra?
Problem: Given a large set S of redundant linear equations, pick a small
subset s C S that still allows to uniquely solve for a given set of

unknowns

Challenge: |{s C S}| = 2SI — Heuristics — ML
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undamental Physics

Aim: Understand fundamental constituents of matter & interactions!

Image: ATLAS Image: NASA/Goddard Space Flight Center

New experiments = Need for high-precision theory predictions!
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undamental Physics

Aim: Understand fundamental constituents of matter & interactions!

Image: ATLAS Image: NASA/Goddard Space Flight Center

New experiments = Need for high-precision theory predictions!

Theoretical framework:
Quantum Field Theory = Special relativity + Quantum Mechanics
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Pipeline for calculating precision predictions

Feynman Feynman Master
diagrams integrals integrals

Predictions

< GHARD FEYNMAN ~ 10° ~ 102

IBP
reduction
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Pipeline for calculating precision predictions

Feynman Feynman Master
diagrams integrals integrals

Predictions

<RIGHARD FEYNMAN ~ 10° ~ 102

IBP
reduction

What is integration-by-parts (IBP) reduction?
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Pipeline for calculating precision predictions

Feynman Feynman Master
diagrams integrals integrals

Predictions

< GHARD FEYNMAN ~ 10° ~ 102

IBP
reduction

What is integration-by-parts (IBP) reduction?
(Feynman integrals) = vector space of finite dimension

[Smirnov, Petukhov (2010)]
= 3 finite basis {h,..., Iy} a.k.a. master integrals
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Pipeline for calculating precision predictions

Feynman Feynman Master o
di . . Predictions
iagrams integrals integrals
S HICHARD EYNMAN ~ 105 ~ 102
IBP
reduction

What is integration-by-parts (IBP) reduction?
(Feynman integrals) = vector space of finite dimension

[Smirnov, Petukhov (2010)]
= 3 finite basis {h,..., Iy} a.k.a. master integrals
= Decompose | = vazl cil;
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Pipeline for calculating precision predictions

Feynman Feynman Master o
. . . Predictions
diagrams integrals integrals
. IGHARD FEYNMAN ~ 105 ~ 102
IBP
reduction

What is integration-by-parts (IBP) reduction?
(Feynman integrals) = vector space of finite dimension
[Smirnov, Petukhov (2010)]
= 3 finite basis {h,..., Iy} a.k.a. master integrals
= Decompose | = vazl cil;

Bottle neck of many calculations!
e.g. 300k CPU hours [Driesse, Jakobsen, Mogull, Plefka, Sauer, Usovitsch (2024)]
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Feynman integrals and IBP identities

General family of Feynman integrals

/ H/ 1d ki
R R IR

where a; € Z, L €N, ke R, p=1,...,D and D; polynomials
/
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Feynman integrals and IBP identities

General family of Feynman integrals

/ H/ 1d ki
R R IR

where a; € Z, L €N, ke R, p=1,...,D and D; polynomials
/

Integration-by-part identities [Chetyrkin, Tkachov (1981)]

0= /H d”k; Z dk” niai = linear combination of /;

n=1

for any g € R” with al = a;,a; + 1
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Feynman integrals and IBP identities

General family of Feynman integrals

/ H/ 1d ki
R R IR

where a; € Z, L €N, ke R, p=1,...,D and D; polynomials
/

Integration-by-part identities [Chetyrkin, Tkachov (1981)]
0= /H d” k; Z dk” ,,7;“ = linear combination of /;
pn=1
for any g € R” with al = a;,a; + 1

Integration-by-part identities can't be solved for generic a;
— specify to particular values S C Z" and solve via Laporta’s algorithm
[Laporta (2000)]
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A simple example

Integral family example: Bubble integral O

dPk
/al,az = / (/(2 — m2)31 [(p _ k)2]32

with p e R”, meR
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A simple example

Integral family example: Bubble integral

()
/

| _ d"k

ar,az — (k2 o m2)81 [(p o k)2]32
with p e R”, meR
Integration-by-part identities for g = p, k:

0= (D72‘31732)l317a2 - 231m2la1+17a2 - 32(m27p2)la1732+1 - 32I81—17r32+1
0= (‘32731)/31,52 - 31(m2+p2)/31+1752 - 32(m2

+ aila41,8—1

2
—-P )I31,32+1 - 32/a171,az+1
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A simple example
Integral family example: Bubble integral O

| _ d"k

ar,az — (k2 o m2)81 [(p o k)2]32
with p e R”, meR
Integration-by-part identities for g = p, k:

2 2 2

0= (D72‘31732)l317a2 —2a1m Ia1+17a2 - 32(m —P )Ia1732+1 - 32I81—17r32+1
2 2 2 2

0= (‘32731)/31,52 - al(m +p )/31+1752 - aZ(m —-P )I31,32+1 - 32/31*17524*1

+ aila41,8—1

Possible master integrals 1, b
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A simple example

Integral family example: Bubble integral O

d"k
e = / (2 = 2 [(p = kY1

with p e R”, meR

Integration-by-part identities for g = p, k:

2 2 2
0= (D72‘31732)l317a2 —2aim Ia1+17a2 - 32(m —-p )Ia1732+1 - 32I81—17r32+1

2

0= (‘32731)I31,52 - 31(m2+p2)/51+1,az - az(m 7p2)lal,22+1 - 32/51717324»1

+ aila41,8—1

Possible master integrals 1, b

Task: IBP reduce k1
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A simple example

Integral family example: Bubble integral O

d"k
e = / (2 = 2 [(p = kY1

with p e R”, meR

Integration-by-part identities for g = p, k:

2 2 2
0= (D72‘31732)l317a2 —2aim Ia1+17a2 - 32(m —-p )Ia1732+1 - 32I81—17r32+1

2

0= (‘32731)I31,52 - 31(m2+p2)/51+1,az - az(m 7p2)lal,22+1 - 32/51717324»1

+ aila41,8—1

Possible master integrals 1, b

Task: IBP reduce k1

Solution: Picking a; = a» = 1 above = h 1 = ng:z? hi— ,172£p2 h.o
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A simple example

Integral family example: Bubble integral O

d"k
e = / (2 = 2 [(p = kY1

with p e R”, meR

Integration-by-part identities for g = p, k:

2 2 2
0= (D72‘31732)l317a2 —2aim Ia1+17a2 - 32(m —-p )Ia1732+1 - 32I81—17r32+1

2

0= (‘32731)I31,52 - 31(m2+p2)/51+1,az - az(m 7p2)lal,22+1 - 32/51717324»1

+ aila41,8—1

Possible master integrals 1, b

Task: IBP reduce k1

Solution: Picking a; = a» = 1 above = h 1 = ng:z? hi— ,172£p2 h.o

Homework: IBP reduce I5 5
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Seeding strategies

How to choose seeds? Heuristics!
Define for (ay,...,an) € Z"™

tEZl, rEZa,-, d=r—t, SE—ZB;

a; >0 a;>0 a;<0

Rectangular Seeding: S; = {(a1,...,an) € Z"|r < fpax A S < Smax }
w/ parameters fnax, Smax

Golden Rule: S, = {(a1,...,an) € S1|d < dmax} W/ parameter diax
[Laporta (2000)]
Homework: IBP reduce lss — S; = S, = {(a1, a2) € Z?|r <9 A s <0}

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics



Seeding strategies

How to choose seeds? Heuristics!
Define for (ay,...,an) € Z"™

tEZl, rEZa,-, d=r—t, SE—ZB;

a; >0 a;>0 a;<0

Rectangular Seeding: S; = {(a1,...,an) € Z"|r < fpax A S < Smax }
w/ parameters fnax, Smax

Golden Rule: S, = {(a1,...,an) € S1|d < dmax} W/ parameter diax
[Laporta (2000)]
Homework: IBP reduce lss — S; = S, = {(a1, a2) € Z?|r <9 A s <0}

Improved Seeding: S3 = {(a1,...,an) € S2|s <t —/+1} w/ parameter |

= Order of magnitude improvements in number of seeds and time!
[Usovitsch (talk in 2023)]
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Idea: Use ML to discover better heuristics ‘.\;\
for picking seeds s C S )

*Always test using with ap, ..., a7
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© Machine-learning approaches
@ Funsearch
@ Strongly-typed genetic programming
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What is funsearch?

funsearch [Romera-Paredes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg,
Wang, Fawzi, Kohli, Fawzi (2023)]

Solving problems by automated brainstorming
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Funsearch in a nutshell

ChatGPT,
give me a
solution
to my
problem!*f

G /
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Funsearch in a nutshell

ChatGPT,
give me a
solution
to my
problem!*f

G /

* As python code, so | can check how good it is

ML for analytic calculations in theoretical physics
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Funsearch in a nutshell

ChatGPT,
give me a
solution
to my
problem!*f

G /

* As python code, so | can check how good it is
 Given those two solutions from earlier already that worked pretty well
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Funsearch in slightly longer

FunSearch

Evaluation

Pretrained LLM o] — =il

X Lm B

Specification ¢ \ New program
/ —F

Programs
database

[Romera—Paredes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg, Wang, Fawzi,

Kohli, Fawzi (2023)]
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Properties of funsearch

Some properties:
@ Variant of genetic programming, but unconstrained
@ Output is python code
= interpretable
= generalizable

[RomerafParedes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg, Wang, Fawzi,

Kohli, Fawzi (2023)]
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Properties of funsearch

Some properties:
@ Variant of genetic programming, but unconstrained
@ Output is python code
= interpretable
= generalizable

[RomerafParedes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg, Wang, Fawzi,

Kohli, Fawzi (2023)]

Fitness
e GauB elimination O(|s|®) — less seeds is better

—|s] if 3 solution

@ Fitness = . .
—|s| —|S| if P solution

[von Hippel, MW (2025)]
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Properties of funsearch

Some properties:
@ Variant of genetic programming, but unconstrained
@ Output is python code
= interpretable
= generalizable

[RomerafParedes, Barekatain, Novikov, Balog, Kumar, Dupont, Ruiz, Ellenberg, Wang, Fawzi,

Kohli, Fawzi (2023)]

Fitness
e GauB elimination O(|s|®) — less seeds is better

—|s] if 3 solution

@ Fitness = . .
—|s| —|S| if P solution

[von Hippel, MW (2025)]

@ Sparse — Refined fitness = # element-wise operations [Zeng (2025)]

Matthias Wilhelm (University of Southern Denmark) ML for analytic calculations in theoretical physics



Experiment with funsearch

Starting point corresponding to a golden rule system with dy . =

priority(a_list: list[int]) -» bool:
*""Decides whether to include th d a_list in the ibp system.
Returns True or False."™"

n_alist=len(a_list)

s=sum{map ( x: 1 if x>8 else 8,a_list))

ors=sum{map ( x: 1 if %<8 else B,a_list))

dots=sum({map ( x: x-1 if x>1 else @,a_list))

if dots>1:
return

= 2,148 seeds [von Hippel, MW (2
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Experimental results

After 2,400 generation: 2,148 seeds — 92 seeds
= improved seeding strategy with dy.x =0 and / =4
= Rediscovered state of the art!

[von Hippel, MW (2025)]

Matthias Wilhelm (University of Southern Denmark)

ML for analytic calculations in theoretical physics



Experimental results

After 2,400 generation: 2,148 seeds — 92 seeds
= improved seeding strategy with dy.x =0 and / =4
= Rediscovered state of the art!

After 3,800 generation: 2,148 seeds — 88 seeds
= improved seeding strategy + t > 4
= Improvement on state of the art!
[von Hippel, MW (2025)]
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© Machine-learning approaches

@ Strongly-typed genetic programming
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Classic genetic programming

Funsearch: unconstrained + slow — Exploration
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Classic genetic programming

Funsearch: unconstrained + slow — Exploration

Classic genetic programming: constrained + fast — Exploitation
e.g. [Distributed Evolutionary Algorithms in Python (DEAP)]
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Classic genetic programming

Funsearch: unconstrained + slow — Exploration

Classic genetic programming: constrained + fast — Exploitation
e.g. [Distributed Evolutionary Algorithms in Python (DEAP)]
Syntax trees

def func(argl,h arg2):
return argl>0 and arg2<argl+3

-and
/ \
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Classic genetic programming

Funsearch: unconstrained + slow — Exploration

Classic genetic programming: constrained + fast — Exploitation
e.g. [Distributed Evolutionary Algorithms in Python (DEAP)]
Syntax trees

def func(argl,h arg2):
return argl>0 and arg2<argl+3

-and
/ \

3+4True Nonsense = Strongly typed genetic programming
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Strongly typed genetic programming

Evolving trees = grafting
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Strongly typed genetic programming

Evolving trees = grafting

Image: nwtree.com

Cross-over Replace random sub-tree by random sub-tree of another tree
Mutation Replace random sub-tree by random new sub-tree
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Strongly typed genetic programming

Evolving trees = grafting

Image: nwtree.com

Cross-over Replace random sub-tree by random sub-tree of another tree
Mutation Replace random sub-tree by random new sub-tree

Building blocks
o Arguments built from (a1,...,a,) € Z: >, o ai, D_,1 i
- Za,»<o ai, Zaf i, Za;>0 1, Za;>1 1, Za,-<0 1, Za,:o L, Za,»:l Lon
@ Primitives: and, >, <, =, +, —

@ Terminal elements: True, fnax, Smax, —10,...,+10
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Experimental results

After 18 generation: 2,148 seeds — 88 seeds
= improved seeding strategy + t > 4
= Same result as funsearch but faster!

[von Hippel, MW (2025)]
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Experimental results

After 18 generation: 2,148 seeds — 88 seeds
= improved seeding strategy + t > 4
= Same result as funsearch but faster!

Final tree

[von Hippel, MW (2025)]
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Conclusion

@ Bottle neck for analytic calculations in theoretical physics:
IBP reductions 3

Image: ATLAS

o Challenge: Pick set s C S of linear equations

age: NASA,/Goddard Space Flight Center

e ML approach:

o funsearch

o strongly typed genetic programming

= Improvement over state of the art = Proof of principle!

[von Hippel, MW (2025)]
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o funsearch — AlphaEvolve
[Novikov, Vii,Eisenberger,Dupont,Huang,Wagner,Shirobokov, Kozlovskii et al. (2025)]

@ Gamification — RL
[Zeng (2025)], [Berman, Charton, MW, Zeng (in progress)]

@ Generalization & Deployment
o Interpret = Deploy analytic seeding strategy
o Finite field techniques — Training budget of 10° — 10° runs
= Deploy ML

Image: Road Travel America
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o funsearch — AlphaEvolve
[Novikov, Vii,Eisenberger,Dupont,Huang,Wagner,Shirobokov, Kozlovskii et al. (2025)]

@ Gamification — RL
[Zeng (2025)], [Berman, Charton, MW, Zeng (in progress)]

@ Generalization & Deployment
o Interpret = Deploy analytic seeding strategy
o Finite field techniques — Training budget of 10° — 10° runs
= Deploy ML

Image: Road Travel America
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Back-up slide: Generalization & Deployment

Option A
Interpretable = Deploy analytic seeding strategy
@ t > 4 [von Hippel, MW (2025)]

[Song, Yang, Cao, Luo, Zhu (2025)]
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Back-up slide: Generalization & Deployment

Option A
Interpretable = Deploy analytic seeding strategy
@ t > 4 [von Hippel, MW (2025)]

[Song, Yang, Cao, Luo, Zhu (2025)]

Option B
Finite field techniques [von Manteuffel, Schabinger (2014)], [Peraro (2016)]

@ Run for D, mj;,s; € Fp
@ Reconstructs rational dependence on D, m;, s;;
— Training budget of 10° — 10° runs = Deploy ML
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