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Using computations (+ experiments) to quantify 
biomolecule dynamics at time scales faster than the 
sampling (exposure) times (milliseconds).

Purpose:

Super-(spatial)-resolution microscopy is 
done(!?) – we reached nm scales.

Can we increase time-resolution beyond 
milliseconds?  

Erik Clarkson, Lund Uni.



Bayesian data analysis - a primer
(for ANNers and LLMers) 

The Likelihood is our model

𝑃 𝜃 𝑂  =
𝐿 𝑂 𝜃 𝜋(𝜃)

𝑍

π – prior
Z – evidence
P - posterior

𝑍 =  න 𝐿 𝑂 𝜃 𝜋 𝜃  𝑑𝜃

O – data
L – likelihood
θ - parameters Reverend Thomas Bayes, 1740s

Pierre-Simon Laplace, 1774

How to use:

1. Choose best model: maximize Z  
[Occam’s razor built-in, no overfitting).

2. “Learning”: Posterior gives model 
parameters [“loss function” =  - log(P)]

3. Generate new data: Posterior 
predictives [given the ”old” data,  what 
is the probability for “new data”]

“Machine learning when we do not 
have massive amounts of data”.

NOTE. Automatic “interpretability”. 



The DATA – two-state diffusion single-
molecule trajectories
• Wide-field fluorescence 

microscopy
• Fluorescent tags on T-cell 

receptors (TCRs)
• Two (hidden) states due to 

binding events of TCRs to pMHC
molecules (“slow” and “fast” 
diffusion). 

Experiments: Peter Jönsson’s group, Dept. of 
Chemistry, Lund University



Outline for the rest of the talk

• Warmup: Two-state slow switching diffusion and Bayesian inference.

• Increasing time-resolution for two-state diffusion – stHMM (subtime
Hidden Markov Model).

[Discretely sampled (over a time window) continuous-time processes]

Bayesian data analysis for:



Two-state diffusion with slow switching



The DATA 
(synthetic)

NOTE: colors (ground 
truth state) are not 
seen in experiments



Now, Bayes!



The model (likelihood)

𝑃 𝑂 𝜃 =  ෍
𝑠0,…,𝑠𝑁

𝑃 𝑂 𝑠1, … , 𝑠𝑁, 𝜃 𝑃(𝑠1, … , 𝑠𝑁)

𝑂 = Δ1, … , Δ𝑁

𝜃 = 𝐷1, 𝐷2, 𝑝12 , 𝑝21

=  ෍
𝑠0,…,𝑠𝑁

ෑ
𝑗=1

𝑁
1

2𝜋𝜎 𝑠𝑗
2 exp −

Δ𝑗
2

2𝜎 𝑠𝑗
2 𝑃 𝑠1 𝑃(𝑠2|𝑠1) ⋯ 𝑃 𝑠𝑁−1 𝑠𝑁−2 𝑃(𝑠𝑁|𝑠𝑁−1)

s1, … , s𝑁

𝜎 𝑠 2 = 2𝜏𝐷(𝑠)

Data/Observations

Model parameters

Hidden (“latent”) states Sampling time

Displacements
Transition probabilities

L = likelihood

EMISSION PROBABILITIES

Hidden 
Markov 
Model
(HMM)

= Path probability (fixed state sequence)



Likelihood computation in practice
• Forward algorithm avoids “2N-problem”

𝛼𝑛(𝑖)  = ෍
𝑘=1

2

𝛼𝑛−1 𝑘 𝑃(𝑠𝑛 = 𝑖 𝑠𝑛−1 = 𝑘 𝑃 Δ𝑛 𝑠𝑛 = 𝑖

𝐿 𝑂 𝜃 = ෍
𝑖=1

2

𝛼𝑁(𝑖)

R. Das et al. "A Hidden Markov Model for Single Particle Tracks Quantifies Dynamic Interactions between LFA-1 and 
the Actin Cytoskeleton". PLoS Comput Biol 5.11 (2009). 
E. Clarkson and T.A., Bayesian and frequentist analyses of two-state single-molecule diffusion trajectories, J. Phys. A 
58 (2025)



Sampling model parameters –
Nested sampling
• Evolve a number of ‘live points’

• Compress parameter space 
around high-likelihood regions

• Output multivariate posterior, 
P(θ|O), and evidence, Z.

• Project posterior distribution 
onto one parameter axis Figure 4. 2D-slice of parameter space 

with live points.



Results



How to increase time resolution 
using computations?

subtime-HMM (stHMM) 

Applications: Discretely sampled continuous-time 
processes.



The 
DATA

NOTE: colors 
(ground truth 
state) are not 
seen in 
experiments

wn = fraction 
of time spent 
in state 1 
during time 
interval n. 



Now, Bayes!



𝜎 𝑤𝑛
2 = 2𝜏𝐷 𝑤𝑛 = 2𝜏(𝑤𝑛𝐷1 + 1 − 𝑤𝑛 𝐷2)

wn = fraction of time spent in state 1 during time interval n. 

Emission probabilities have mean = 0 and variance:

Emission probabilities
depends only on wn



Likelihood for continuous time

Integrate out 
unobserved 
(hidden/latent) 
transitions within 
each time interval

Weight for state 1

Transition-accretion 
probability

Emission probability

Forward algorithm can be extended. The one-variable integral is computed numerically.

stHMM likelihood 



• Moment generating function
• Fixed start and end states
• Four cases need to be separately dealt with

2 → 1;  
#switches > 0

Example:

Modified Bessel function

Many weeks later … 



Results,
Model 
selection

𝜈 = k 𝜏 = average 
number of 
switches per 
sampling time

D1 /D2 =10 D1 /D2 =3



Results, 
Parameter
estimation

HMM - neglects subtime events.
Current state of the art:

stHMM helps to solve the 
“photon budget dilemma”

E. Clarkson and T. Ambjörnsson, 
Achieving subsampling time resolution 
in the analysis of two-state single 
molecule trajectories, submitted

𝜈 = k 𝜏



Summary
• Bayesian data analysis for model selection and parameter estimation 

from single-molecule trajectories.
• Through stHMM we reach sub-sampling-time resolution. Main novelty: 

transition-accretion probabilities.
• stHMM outperforms previous state-of-the-art method (HMM).
• General framework for discretely sampled continuous time processes(?).

Funding: Swedish Research Council, 2023-2027. 

Outlook
• Extend to N states instead of 2. Use Bayesian model selection to determine 

optimal value of N.
• Apply to actual experimental data ... 


