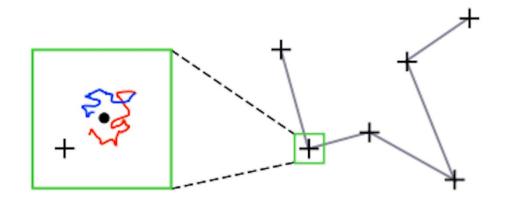
Achieving subsampling time resolution in the analysis of two-state single molecule trajectories

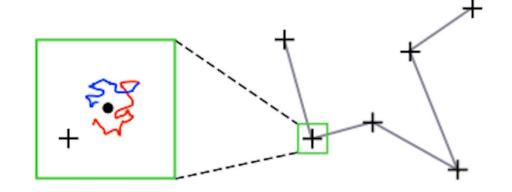
### By Tobias Ambjörnsson

Computational Science for Health and Environment (COSHE), Lund University



Super-(spatial)-resolution microscopy is done(!?) – we reached nm scales.

Can we increase time-resolution beyond milliseconds?



## Purpose:

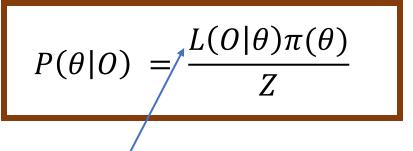
Using computations (+ experiments) to quantify biomolecule dynamics at time scales faster than the sampling (exposure) times (milliseconds).



Erik Clarkson, Lund Uni.

# Bayesian data analysis - a primer (for ANNers and LLMers)

"Machine learning when we do not have massive amounts of data".



#### The Likelihood is our model

$$Z = \int L(O|\theta)\pi(\theta) d\theta$$

O – data  $\pi$  – prior

L – likelihood Z – evidence

 $\theta$  - parameters P - posterior

#### How to use:

- **1. Choose best model**: maximize Z [Occam's razor built-in, no overfitting).
- 2. "Learning": Posterior gives model
   parameters ["loss function" = log(P)]
- **3. Generate new data:** Posterior predictives [given the "old" data, what is the probability for "new data"]

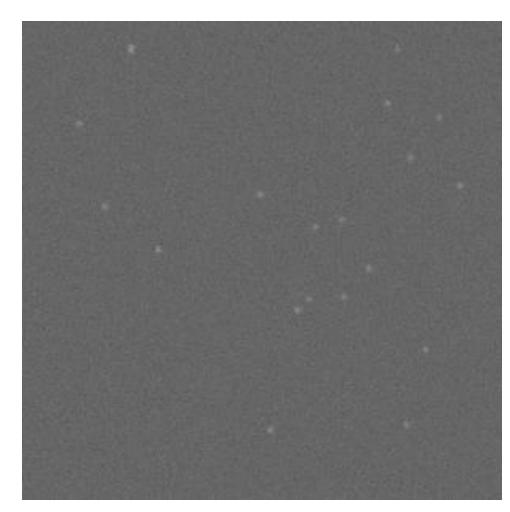
NOTE. Automatic "interpretability".

Reverend Thomas Bayes, 1740s Pierre-Simon Laplace, 1774

# The DATA – two-state diffusion single-molecule trajectories

- Wide-field fluorescence microscopy
- Fluorescent tags on T-cell receptors (TCRs)
- Two (hidden) states due to binding events of TCRs to pMHC molecules ("slow" and "fast" diffusion).

Experiments: Peter Jönsson's group, Dept. of Chemistry, Lund University



### Outline for the rest of the talk

### Bayesian data analysis for:

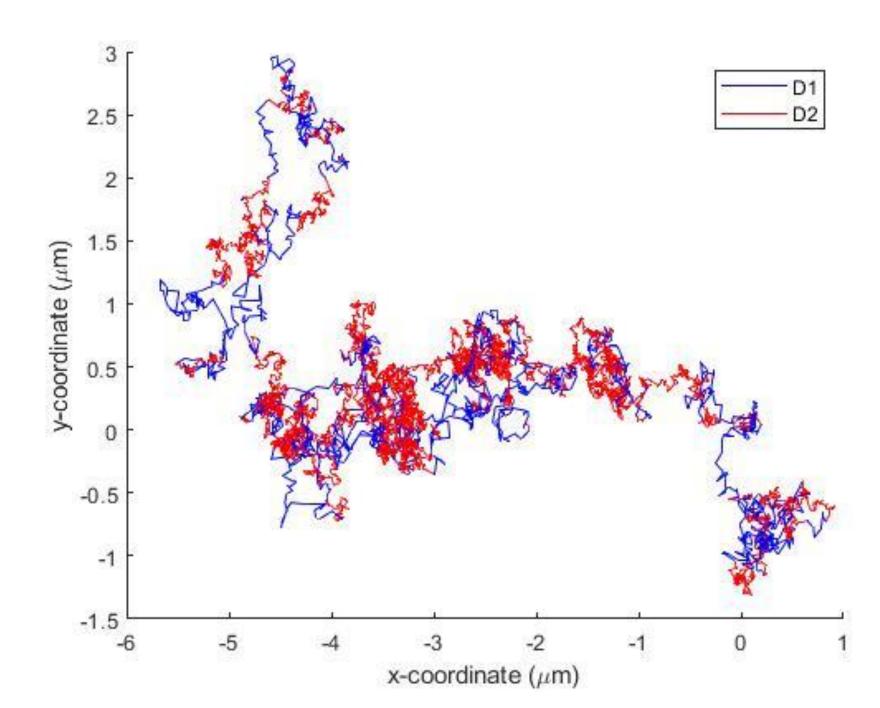
- Warmup: Two-state slow switching diffusion and Bayesian inference.
- Increasing time-resolution for two-state diffusion stHMM (subtime Hidden Markov Model).

[Discretely sampled (over a time window) continuous-time processes]

# Two-state diffusion with slow switching

# The DATA (synthetic)

NOTE: colors (ground truth state) are not seen in experiments



Now, Bayes!

# The model (likelihood)

Data/Observations

$$O = \Delta_1, \ldots, \Delta_N$$

Model parameters

$$\theta = D_1, D_2, p_{12}, p_{21}$$

Displacements

Hidden ("latent") states

$$S_1, \dots, S_N$$

L = likelihood

$$P(O|\theta) = \sum_{s=s}^{s} P(O|s_1, ..., s_N, \theta) P(s_1, ..., s_N)$$

Transition probabilities

Hidden

$$= \sum_{S_0,\dots,S_N} \prod_{j=1}^N \frac{1}{2\pi\sigma(s_j)^2} \exp\left(-\frac{\Delta_j^2}{2\sigma(s_j)^2}\right) P(s_1) P(s_2|s_1) \cdots P(s_{N-1}|s_{N-2}) P(s_N|s_{N-1})$$

EMISSION PROBABILITIES = Path probability (fixed state sequence)

## Likelihood computation in practice

Forward algorithm avoids "2<sup>N</sup>-problem"

$$\alpha_n(i) = \sum_{k=1}^2 \alpha_{n-1}(k) P(s_n = i | s_{n-1} = k) P(\Delta_n | s_n = i)$$

$$L(O|\theta) = \sum_{i=1}^{2} \alpha_{N}(i)$$

R. Das et al. "A Hidden Markov Model for Single Particle Tracks Quantifies Dynamic Interactions between LFA-1 and the Actin Cytoskeleton". PLoS Comput Biol 5.11 (2009).

E. Clarkson and T.A., Bayesian and frequentist analyses of two-state single-molecule diffusion trajectories, J. Phys. A 58 (2025)

Sampling model parameters – Nested sampling

- Evolve a number of 'live points'
- Compress parameter space around high-likelihood regions
- Output multivariate posterior,
   P(θ|O), and evidence, Z.
- Project posterior distribution onto one parameter axis

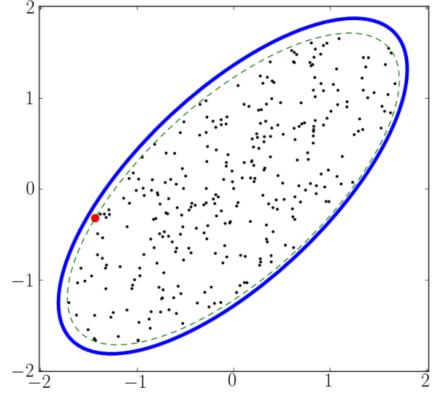
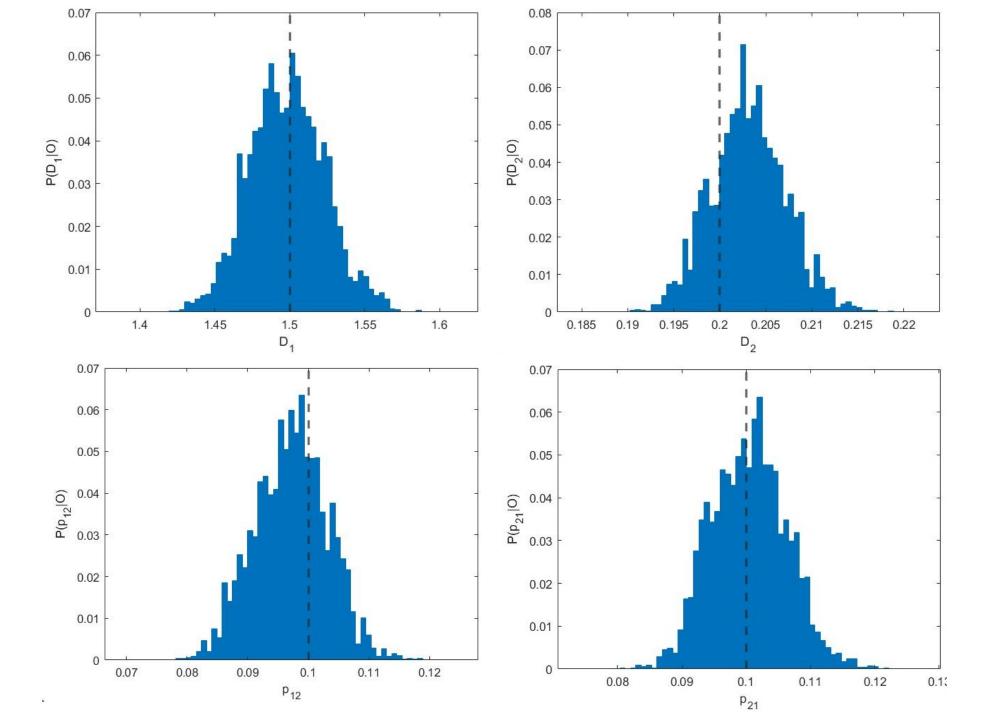


Figure 4. 2D-slice of parameter space with live points.

## Results

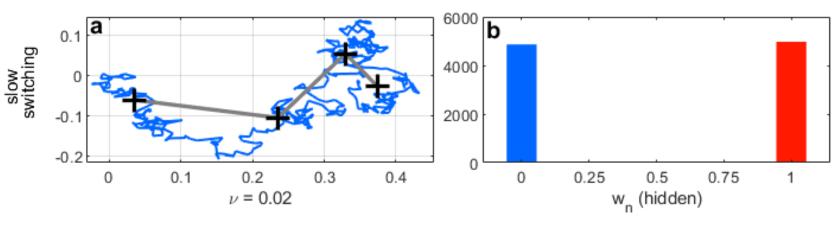


# How to increase time resolution using computations?

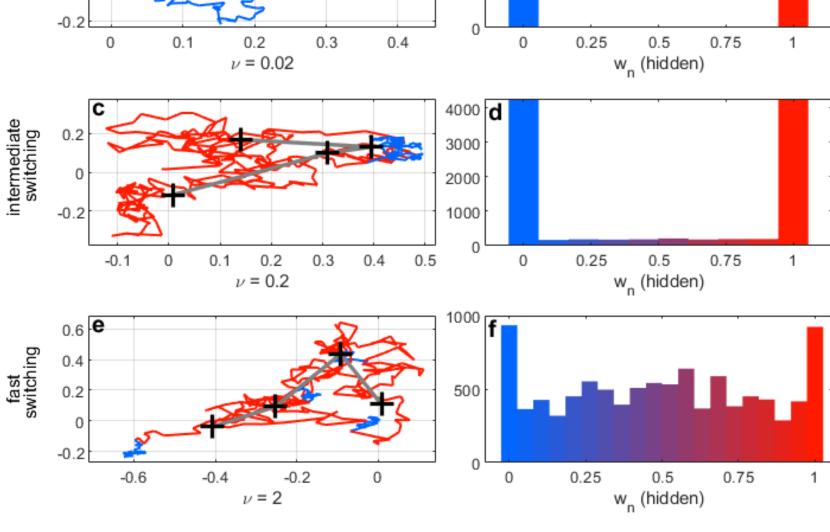
# subtime-HMM (stHMM)

Applications: Discretely sampled continuous-time processes.

# The DATA



NOTE: colors (ground truth state) are not seen in experiments



w<sub>n</sub> = fraction of time spent in state 1 during time interval n.

Now, Bayes!

## Emission probabilities

depends only on w<sub>n</sub>

Emission probabilities have mean = 0 and variance:

$$\sigma(w_n)^2 = 2\tau D(w_n) = 2\tau (w_n D_1 + (1 - w_n) D_2)$$

 $w_n$  = fraction of time spent in state 1 during time interval n.

### Likelihood for continuous time

#### stHMM likelihood

probability

Integrate out unobserved (hidden/latent) transitions within each time interval

$$P(\Delta_1,\dots,\Delta_N|\theta) = \\ \sum_{s_0=1}^2\dots\sum_{s_N=1}^2\int_0^1\mathrm{d}w_1\dots\int_0^1\mathrm{d}w_N \\ P(\Delta_1|w_1,\theta)P(s_0,\theta)P(w_1,s_1|s_0,\theta)\dots \\ P(\Delta_N|w_N,\theta)P(w_N,s_N|s_{N-1},\theta) \\ \\ \\ E_{\text{mission probability}} \\ \\ Transition-accretion$$

Forward algorithm can be extended. The one-variable integral is computed numerically.



#### Many weeks later ...

- Moment generating function
- Fixed start and end states
- Four cases need to be separately dealt with

#### Example:

$$P(w_{n}, s_{n} = 1 | s_{n-1} = 2, \theta)$$

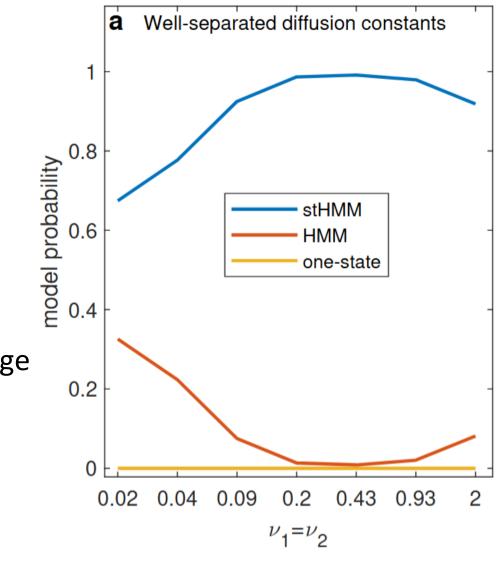
$$= \tau k_{21} e^{-\tau (k_{12}w_{n} + k_{21}(1 - w_{n}))}$$

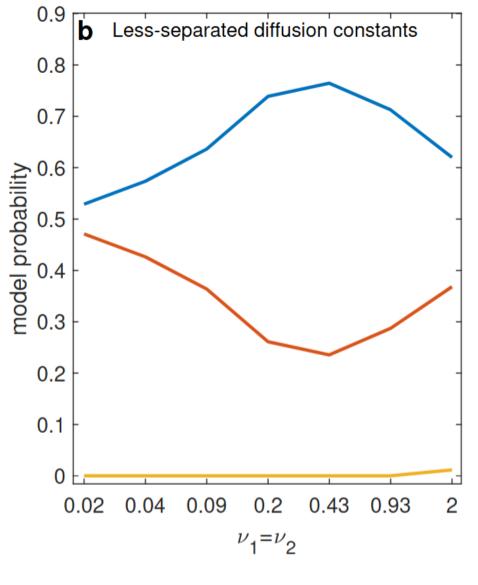
$$I_{0} \left(2\tau \sqrt{k_{12}k_{21}w_{n}(1 - w_{n})}\right),$$
\*\*Jumpsilon\*\*
$$I_{0} \left(2\tau \sqrt{k_{12}k_{21}w_{n}(1 - w_{n})}\right),$$

**Modified Bessel function** 

## Results, Model selection

 $\nu$  = k  $\tau$  = average number of switches per sampling time





$$D_1/D_2 = 10$$

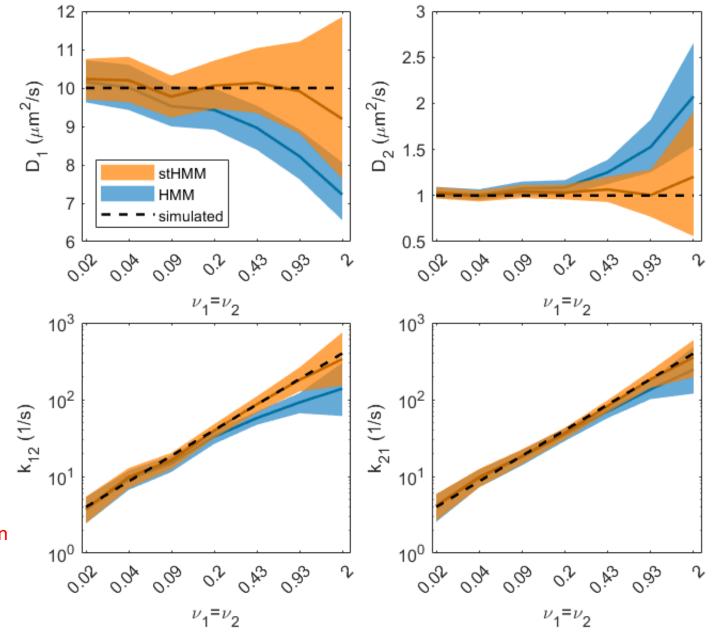
$$D_1/D_2 = 3$$

## Results, Parameter estimation

Current state of the art: **HMM** - neglects subtime events.

stHMM helps to solve the "photon budget dilemma"

E. Clarkson and T. Ambjörnsson, Achieving subsampling time resolution in the analysis of two-state single molecule trajectories, submitted



 $\nu = k \tau$ 

## Summary

- Bayesian data analysis for model selection and parameter estimation from single-molecule trajectories.
- Through stHMM we reach sub-sampling-time resolution. Main novelty: transition-accretion probabilities.
- stHMM outperforms previous state-of-the-art method (HMM).
- General framework for discretely sampled continuous time processes(?).

### Outlook

- Extend to N states instead of 2. Use Bayesian model selection to determine optimal value of N.
- Apply to actual experimental data ...

Funding: Swedish Research Council, 2023-2027.