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Earth’s glaciers: Randolph Glacier Inventory (RGI)

RGI Version v. 7: 274,531

[1]
Image from Randolph Glacier Inventory, version 6.
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Motivations
Glacier mass loss: 18% larger than the loss from the Greenland Ice
Sheet and more than 2x Antarctic Ice Sheet.
Global loss 273±16 Gt/yr from 2000 to 2023, with an increase of
36±10% over the last decade.

The GlaMBIE Team, Nature, 2025
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The GlaMBIE Team, Nature, 2025
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This is dM/dt (mass change)

But ...

How much ice mass is there ? M = ?
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Current approaches for glacier ice thickness inversion

1 Area-volume scaling approaches, V ≃ cAγ

2 Geometrical models of bedrock shape (e.g. u-shaped valleys)

3 Mass conservation: dH
dt +∇ · (Hv⃗) = Ms +Mb

4 Approximations of full-Stokes model, e.g. Shallow Ice Approximation
(SIA, 1984)

H =

(
vs(1 − β)(n+ 1)

2A(ρg)n||∇⃗z||n

) 1
n+1

5 Machine (-deep) learning: few local attempts.

Global glacier models:

1 Farinotti et al. (2019), ensemble of (up to) 5 models

2 Millan et al. (2022), Shallow Ice Approximation
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In-situ surveys: ice thickness measurements

Photo credit: Elizabeth Case.

Ground-penetrating radar systems: emit radio waves and record the
reflected signal.
Basal reflections originate from the strong contrast between the ice and the
underlying sediment, bedrock, or water.
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NASA IceBridge: a legacy of millions of data points

For eleven years from 2009 through 2019, the planes of NASA’s Operation
IceBridge flew above the Arctic, Antarctic and Alaska, gathering data on the
height, depth, thickness, flow and change of sea ice, glaciers and ice
sheets.
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Goal
Build a ML model for ice thickness inversion of glaciers.

Methodology
Supervised-learning approach

y: target tabular data (ice thickness is measured discretely in space).

x⃗: array of model inputs. Some are raster, some are tabular.

- - - track

y: ice thickness

x⃗: feature array

(y1, x⃗1)
(y2, x⃗2)

(y3, x⃗3)
(y4, x⃗4)

(y5, x⃗5)

(y6, x⃗6)

(y7, x⃗7)
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Model inputs, x⃗
1 Distance to margin

2 Surface mass balance (+1)

3 Surface ice velocity (6x)

4 Elevation

5 Elevation normalized 0-1

6 Elevation from base

7 Slope (8x +1)

8 Curvature (6x + 1)

9 Glacier zmin, zmax, zmed

10 Glacier zmax-zmin

11 Glacier and Cluster Areas

12 Glacier Perimeter and
Length

13 Glacier Aspect

14 Surface temperature

15 Distance to ocean
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Ice thickness inversion via gradient-boosted trees

(ICEBOOST)

Pipeline

Training data: y (ice thickness) + 39 numerical features x⃗

Gradient Boosted Decision Trees: XGBoost + CatBoost.

Training data
Target (y): 6.5 million thickness measurements

Data from ca. 1400 glaciers (0.6% of all Earth’s glaciers).

Hyperparameters
Model is optimized globally (not stratified regionally)

[1]
GlaThiDa Consortium (2020): Glacier Thickness Database 3.1.0. World Glacier Monitoring Service, Zurich, Switzerland.
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Model error: rmse, [m]

Region IceBoost 2025 Millan 2022 Farinotti 2019

Alaska, US, West Canada 116 (21) 151 173
Arctic Canada North 83 (7) 131 129
Arctic Canada South 58 (9) 103 115
Greenland Periphery 93 (23) 112 112

Iceland - - -
Svalbard 52 (7) 66 51

Scandinavia 42 (6) 60 53
Russian Arctic - - -

North Asia 15 (3) 19 23
Central Europe 35 (5) 46 35

Caucasus and Middle East 56 (1) 65 56
Asia 36 (12) 62 37

Low Latitudes - - -
Southern Andes 43 (8) 35 40

New Zealand - - -
Antarctic and Islands 109 (20) 113 192

Maffezzoli et al., GMD, 2025
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Model deploy
Compute feature vector x⃗ at locations within the glacier.

Query the model locally: y = ICEBOOST(x⃗).
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Model deploy
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Model deploy

vs interpolation
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Geikie Plateau (Greenland)
ICEBOOST (left) - BedMachine v5 (right)
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Svalbard
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Arctic
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Global ice volumes on RGI v. 6

Region (·103 km3) IceBoost 2025 Millan 2022 Farinotti 2019

Alaska, US, West Canada 18.74 19.2 ± 5.6 20.0 ± 5.0
Arctic Canada North 24.6 25.4 ± 7.2 28.3 ± 7.3
Arctic Canada South 7.1 7.0 ± 2.1 8.6 ± 2.2
Greenland Periphery 12.8 11.8 ± 3.7 15.7 ± 4.1

Iceland 3.98 3.7 ± 0.9 3.8 ± 1.0
Svalbard 6.90 7.0 ± 2.3 7.5 ± 1.9

Scandinavia 0.29 0.30 ± 0.10 0.30 ± 0.08
Russian Arctic 13.9 15.5 ± 3.9 14.6 ± 3.8

North Asia 0.16 0.11 ± 0.05 0.14 ± 0.04
Central Europe 0.11 0.12 ± 0.05 0.13 ± 0.03

Caucasus and Middle East 0.067 0.05 ± 0.03 0.06 ± 0.02
Asia 9.25 9.4 ± 3.7 7.02 ± 1.0

Low Latitudes 0.11 0.07 ± 0.04 0.10 ± 0.03
Southern Andes 5.97 5.9 ± 1.6 5.3 ± 1.4

New Zealand 0.077 0.07 ± 0.03 0.07 ± 0.02
Antarctic and Islands 44.1 35.1 ± 9.1 46 ± 12

Total (·103 km3) 148 141 ± 40 158 ± 41
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SHAP analysis of model features
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Feature ranking with SHAP
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Computation

Hardware
Hard Disk (Input products, .tif, .nc, .shp, .gpkg): 500 GB.

Hard Disk (training dataset, .csv/.parquet): 3 GB.

Hard Disk (Model): 10 MB.

RAM: 32-64 GB.

No GPU.

Multi-core preferable, njobs=8.

Software
Python (+ optional cuda with NVIDIA Rapids)

Time
Feature fetching on-the-fly: CPU. Time: Min 1 s/glacier. Max 60 s/glacier.

Model run: 0.1 s/glacier on CPU.

E.g. regional simulation: Svalbard (1615 glaciers): 6’ with njobs=8.
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Can we model the ice sheets ?

Model: BedMachine v3 (credit: UCI-JPL-Dartmouth)
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Some conclusions

Positives
Lower error by up to 30-40 % at high latitudes compared to baseline models.

Training dataset can be enlarged.

Features can be added (and assessed and removed).

Features can be improved (e.g. DEM, ice velocity, distributed mass-balance,
glacier geometries).

Drawbacks
Input features and target should well behave. Feature imputation is tricky.

Decision boundaries of decision trees may appear.

No physics.
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Thank you.

Questions?

Maffezzoli et al, GMD, 2025

Code: github.com/nmaffe/iceboost

Web Visualizer: nmaffe.github.io/iceboost_webapp
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