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Whoam | ?

Working on the search for "signals of new physics" for 20 years
with automation / data analysis / data science / Al

= What is “new physics” ?

My aim: Establish ML/Al in fundamental physics
(via EuCAIF, darkmachines, Radboud Al, ...)



Outline

| appologize for not mentioning your work or paper (too broad)

Al and HEP
Foundation Models (LHC raw example)
Text Models + benchmarking

Large Physics Models
EuCAIF

s L e

(also for not showing our work on anomaly
detection by Polina Moskvitina, gamma ray
+astrophysics models, black hole simulation, DM, etc.)



NSPIRE s wer .

Literature Authors Jobs Seminars Conferences Data More...

2results | [4 citeall Citation Summary Most Recent
Date of paper

Oscillazioni dei neutrini nella materia e applicazione ai neutrini solari
Beatrice Moser (INFM, Padua) (Sep, 2016)

& links [/ cite @ reference search %) 0 citations

The BSM-AI project: SUSY-Al-generalizing LHC limits on supersymmetry with
machine learning

Sascha Caron (Nijmegen U., IMAPP and NIKHEF, Amsterdam), Jong Soo Kim (Madrid, IFT), Krzysztof
Rolbiecki (Madrid, IFT and Warsaw U.), Roberto Ruiz de Austri (Valencia U., IFIC), Bob Stienen (Nijmegen
Single author 1 U'r IMAPP) (May 9, 2016)

Published in: Eur.Phys.J.C 77 (2017) 4, 257 - e-Print: 1605.02797 [hep-ph]

Number of authors

10 authors or less 2

pdf ¢ DOI [4 cite @ reference search 5) 70 citations

Fun fact: This appears to be among the earliest explicit uses

of the term 'Al' in the title of a particle physics publication (2016), based on our literature search.
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General Relativity
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We know that this is wrong

The Big Bang /Standard Model forces should have created
(almost) equal amounts of matter and antimatter.

Why is there far more matter than antimatter
in the universe?

What is Dark Matter/ Dark Energy ?

What is General Relativity doing at the
Quantum Level ?

HAMLET Kopenhagen 2025, Sascha Caron 9



* Maybe we don’t just need more data — we also might
need better ideas

* Will Al be the tool to help us
generate, test or organize them?



IML working

The speed of Al (r)evolution goup - Partice

at CERN Transformer

Al is evolving quicker than we are ... -Higgs boson
Deep Learning + generative Al changed the game. Kaggle challenge
HEP has been a user and developer for decades. -First deep learning New
Paper in HEP PP
1st Workshop on Al Start of Collider
In High energy & Nuclear arno
Physics (AIHENP) TMva LHC
neus WeRHS mctn funchon Hopfield
.2 network "Dee
g =D o sood) LearrFi)ng”
() Physics
: Hinton et BN
AlexNet)
perceptron al.) CNN tramsformer
1957 1982 1986 1990 1998 2010 2014 2017 2022 2040
Timetable for Al and HEP HAMLET Kopenhagen 2025, Sascha Caron 11

(with some examples of developments)



From Al in Fundamental Physics to Large Physics Models




| 2025:Al/Deep Learning (DL) in HEP
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Al — unfolding
Al — inference

Al - event
selection

Al -
reconstruction

Al -
tracking

Al -
detector
simulation

Al - event
generation

2025:Al/Deep Learning (DL) in HEP

Energy and angles of reconstructed particles

e oh

aoh
AMLET Kopenhagen 2025, Sascha Caron
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c-jet rejection in simulated (Pythia8) top-pair events
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2025:Al/Deep Learning (DL) in HEP

Energy and angles of reconstructed particles

Al — unfolding

Al — inference
Many other Al topics outside the standard

analysis pipeline, e.g.

Al - event
selection -
Al Al - Accelerator Optimization and Control

reconstruction

Al - Monte Carlo sampling

Al - _ Al - Experimental Design
tracking

Al - Sensor Data Reconstruction
Al - f.
detector @ Al — Performance monitoring
simulation N\

Al — Anomaly Detection
Al - event

generation




Al — unfolding
Al — inference

Al - event
selection

Al -
reconstruction

Al -
tracking

Al -
detector
simulation

Al - event
generation

20357:Al/Deep Learning (DL) in HEP

AN A\
\\"/; e ﬁ\{?}{///‘\““ 4:1’7/‘\\&{'}(7%' S

XAKT P NN ALLoamEN K R SNSRI RN
.\§:§'Q{4A large foundation model ? %15/
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Next steps ?

2025:

- Growing interest in end-to-end differentiable pipelines
- Al Surrogate models for simulation + differentiable reco = full learnability

= What if the entire physics analysis pipeline becomes trainable?
=>» Could Al help uncover physics we aren’t even looking for?



Meanwhile in industry...

100 MMLU

'[89.8 = human expert] ...............................................................................................................................................

MMLU benchmark consists of 15,908 multiple-choice
questions

Claude 3 Opus

. . . 25
80 S M k+28n2.0 p
3 . ® o
U-PalM GPT-4 Classic ® , | Geminisl. '
Claude 2 Claude 2:1) Gemini 2.0
[A 70+ IDEAL A] .................................................................................................................................. N SR — -.Tltal’l-.uama2 .......... ‘ ........................ Q... 2 .........................................................................................
o LLaMA-65B
Chinchilla e -
60 ® Ps ® kp ®© ® , ©lama323B
StVW°"""'3B RakutenAl-7B 4 ® Minitron-48
. @ Nemotron-322B 4 @ ® °®
. Baichuan 2 . OLMoE-1B-7B
Galactica Griffin @ JetMoE-8B
Atlas
40 *
4 BLOOM ® o HLAT
UL2 20B BloombergGPT Hawk
%
GPT-NeoX * RWKV-v5 Eagle 7B © Rene
Mistral 7B ° ° PY
RoBERTa ® s alON-Devi
20 Mamba OrApple/@n-Device Jun 24
AMD-Llama-135m
pre-2022 2022 2023 2024 2025

David McCandless, Tom Evans, Paul Barton
Informationisbeautiful // Jan 2024

MMLU = benchmark for measuring LLM capabilities
* = parameters undisclosed // source: LifeArchitect // data

HAMLET Kopenhagen 2025, Sascha Caron 18



Select Al Index technical performance benchmarks vs. human performance
Source: Al Index, 2025 | Chart: 2025 Al Index report
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Human baseline =
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= |mage classification (ImageNet Top-5) Visual reasoning (VQA)
Medium-level reading comprehension (SQUAD 2.0) === English language understanding (SuperGLUE)
=== Multitask language understanding (MMLU) Competition-level mathematics (MATH)
= PhD-level science questions (GPQA Diamond) Multimodal understanding and reasoning (MMMU)

HAMLET Kopenhagen 2025, Sascha Caron The 2025 Al Index Report 19



Number of notable Al models by sector, 2003-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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Science foundation

models

Model

GNoME

xTrimo V3

AlphaFold 3
Modulus

OpenCatalyst

Polaris

Galactica

SciBERT /
BioGPT

Domain

Materials Science

Life Sciences

Structural Biology

Physics (Simulation)
Catalysis, Atomistic
Sim

Earth & Space
Science

General Science
Text

Biomedical NLP

Modalities
Crystal structures,
stability

Genomics, microscopy,
proteins

Protein-ligand-RNA
structure

PDEs, time series, fields

Atomic configs, forces,
reactions

Geospatial, imagery,
time series

Text, code, citations

Text (NER, Q&A,
classification)

Multipurpose? E:::datlo n- Industry Partner(s)
Google DeepMind
Shanghai Al Lab + bio
e e
U U industry
DeepMind +
Isomorphic Labs
NVIDIA
Meta Al + Carnegie

Mellon University

A In NASA + NVIDIA +

v
4 (planned) development  Google Cloud

A Meta Al

(withdrawn)

Allen Al / Microsoft /

(NLPonly) == Meta

HAMLET Kopenhagen 2025, Sascha Caron

No true academia model yet (see table
generated by gpt4o0)

Comparable to Commercial LLMs?

#£ Domain-specific; extremely capable in its

area

My Not general-purpose, but very large-
scale

#2 Narrow but best-in-class in structural
prediction

3¢ Solver-focused, not reasoning-based

3£ Specialized for chemical simulation
#£ Not yet released, promising scope

i High ambition, but not currently available

3£ Narrow, but widely used in biomedical
NLP

Release
Date

Dec 2023

Oct 2024

May 2024

Ongoing

Ongoing
(0C20: 2021)

In
development

Nov 2022
(retracted)

2019-2023

21



Foundation Models: General Intelligence for
Specific Tasks

Typically trained on large, diverse
datasets:

* Text (e.g. web, papers), Code, Images
Math, diagrams, structured data



Foundation Models: General Intelligence for
Specific Tasks

Typically trained on large, diverse
datasets:

* Text (e.g. web, papers), Code , Images
Math, diagrams, structured data
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Foundation Models: General Intelligence for
Specific Tasks

Typically trained on large, diverse
datasets:

* Text (e.g. web, papers), Code, Images
Math, diagrams, structured data

self-supervised
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Foundation Models: General Intelligence for
Specific Tasks

Typically trained on large, diverse
datasets:

* Text (e.g. web, papers), Code, Images
Math, diagrams, structured data

self-supervised

+ transfer learning (minimal fine-tuning) + many parameters + multipurpose
+ some capability not explicitly included during traing

HAMLET Kopenhagen 2025, Sascha Caron 25



Foundation Models: General Intelligence for
Specific Tasks

Typically trained on large, diverse
datasets:

* Text (e.g. web, papers), Code, Images
Math, diagrams, structured data

self-supervised

+ transfer learning (minimal fine-tuning) + many parameters + multipurpose
+ some capability not explicitly included during traing
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Tokens

Tokenization is the process of breaking a sequence into discrete units
— called tokens — that a model can understand.

Input Token Type Result

"Hello world!" Word-level [Hello, world, !]
"x% +y?2 =23" Symbolic [x2, +, y2, =, 23]
"12, 24, 45" Numeric/symbolic [12,,, 24, ,, 45]

"unbelievable" Subword [un, ##tbeliev, #itable]



Tokens

* In Natural Language Processing, vocabularies are often 10K—100K tokens

* Tokens in physics represent in experimental or
simulation data

* They can be explicit (human-defined) or learned (via models like VQ-VAE,
see e.g. arXiv:2401.13537v3 by Golling et al for HEP application)

Examples:
- Detector component identifiers (channels, modules, layers)
- Or of jets, tracks, etc.

HAMLET Kopenhagen 2025, Sascha Caron 28



To introduce transformers and LLMs we look
at encoder — decoder architectures

Input Tokens Encoder I Vect-or Decoder Output Token
(representation)

HAMLET Kopenhagen 2025, Sascha Caron 29



To introduce transformers and LLMs we look
at encoder — decoder architectures

Input Tokens

” o

“The” , “Higgs”, “decays”, “to
- 45, 1293, 34, 55
- V45, v1293, v34, v55

Encoder

”

Latent Vector
(representation)

HAMLET Kopenhagen 2025, Sascha Caron

Decoder

Output Token

Softmax probabilities
Over the full dictionary

- Take the one with the
Largest probability
(argmax)

or sample from probability
distribution

30



To introduce transformers and LLMs we look
at encoder — decoder architectures

Latent Vector

Input Tokens Encoder Decoder

(representation) D

bb_bar. 0.9
”The” , ”HiggS", Ildecaysﬂ’ lltoll .
- 45, 1293, 34, 55 Higgs 0.03

- V45, v1293, v34, v55
Hello 0.0

Susie 0.01

HAMLET Kopenhagen 2025, Sascha Caron 31



To introduce transformers and LLMs we look
at encoder — decoder architectures

Input Tokens Encoder I Vect-or Decoder Output Token
(representation)

encoder T T T
Bottleneck

RNN RNN RNN | RNN (— RNN |—| RNN
é é é decoder
—> Attention
HAMLET Kopenhagen 2025, Sascha Caron 32
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To introduce transformers and LLMs we look
at encoder — decoder architectures

Latent Vector
(representation)

Encoder

Decoder Output Token

encoder

RNN RNN RNN
é é é decoder

Transformers replace the RNN bottleneck with self-attention (correlations of sequence to sequence, can also
implement physics here, see work by Polina Moskvitina in 2211.05143 ), allowing full context access and better
scalability. But the idea of a latent representation. of meaning.lives-on..->that’s a key to foundation models. 33



https://arxiv.org/abs/2211.05143

To introduce transformers and LLMs we look
at encoder — decoder architectures

Quantized latent
Vector
(representation,
tokens)

Encoder+ Vector
Decoder

Quantization
Layer

You can also “learn the tokens” with a Vector Quantized
Variational Autoencoder:
Codebook (dictionary of tokens) is learned duringtraining..ccn 2025, sascha caron 34



=>» Many attempts on arxiv since last year (2024).

As an example | mention here omni-jet alpha
Various work on particles -> jets (2403.05618 by Birk/Hallin/Kasiecka)

start-token —p

'
I
I
I
: Transformer Next-token
| backbone prediction head
|
\
'

Jet generation

token 1 D1
token 2 VQ-VAE y )

—> .. P decoder —
token n —

Pn

B = (pr, ™, ¢™)

Jet classification

P token 1
D2 VQ-VAE token 2 Transformer —

> encoder > A backbone Classification head | —p  Jet type prediction
- token n

J
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Next slides are a very personal selection, showing a bit - as example -
what my own group has been doing towards foundation models in HEP.



ATLAS in Collision Mode Collisions at the
Large Hadron Colllder
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Run Number: 266904, Event Number: 25884352
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Date: 2015-06-03 13:41:54 CEST

Event from LHC run-2




From Hits to Tracks: Tokens in Physics

Latent Vector

Encoder : Decoder
(representation)

(©)
. o0
® o
©ce o _— (@] . . .
(@]
®%e °0%° ° o0 We Tried Tokenization
@
o (©) . .
* ® ° + Regression strategies (no tokens)
@) °e e
(a) EncDec’s input is the set of hit points from a single event, with a couple of them identified as “track seeds”. " H ”
The output contains the rest of the hits associated to the track, following the given seed. - F u I I t ra ns Iatl On a n d

°°. "Se ° o ”Next token predictions”
© o o OO @ O%@o o
Oo 0®y® on® N 0®e®

© 0 Ce

n

* "Trackformers:

(b) EncCla has learned knowledge of the classes to assign hits to. The input is the set of hit points from a single
event, while the output is the collection of class IDs for each hit.

0. - . & Eur.Phys.J.C 85 (2025) 4, 460 ,

00 o *.
° ; G T
%o 0% % e-Print: 2407.07179 [hep-ex]
o
(c) EncReg’s input is the set of hit points HAMJqul-g Mpenbﬁg&&ggﬁreﬁémc‘;y&ﬁtem 39

per hit. HDBSCAN collects the clusters of hits based on proximity in the track parameter space.


https://arxiv.org/abs/2407.07179

Transformers - Trackformer

® This model resembles closely the original transformer architecture [7]

® Translating, e.g. English to Spanish, is a typical task for
transformer models
® This model in similar fashion translates hits to tracks

® Encoder: Encodes full event hits
® No positional embedding as hits have no particular
order
® Fixed-query attention [8] to achieve full positional
invariance of inputs

® Decoder: Predicts next hit in track
® Autoregressively builds the full track, starting from

a g'Ven Seed HAMLET Kopenhagen 2025, Sascha Caron
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Transformers - Trackformer [ ]

Feed Forward
r N\

® This model resembles closely the original transform ‘ o true track

- reco track

® Translating, e.g. English to Spanish, is a typical task f
transformer models
® This model in similar fashion translates hits to tr:

® Encoder: Encodes full event hits
® No positional embedding as hits have no partict
order
® Fixed-query attention [8] to achieve full position
invariance of inputs

= Embedding
® Decoder: Predicts next hit in track | |

% Input Hits
® Autoregressively builds the full track, starting from ¥ X ]

X X

Track;
X
. X X X X
a g'Ven Seed HAMLET Kopenhagen 2025, Sascha Caron




From Hits to Tracks: Tokens in Physics

Latent Vector

Encoder (representation)

Decoder

Grouped into track tokens via
learned structure (attention,
transformers)

0O(10000) hits (no pre-processing)

«  "Trackformers: ”, Eur.Phys.J.C 85 (2025) 4, 460 , e-Print: 240707175 [i8p8x]" 202> Sascha Caron

1.0 .

0.8 1

©
o

Probability
©
£~y

0.2 1

?

0 1000

2000

3000
Track ID

4000

5000

Token ID

SoftMax outputs of the EncCla model
for the first five hits for one event for

all track classes

42
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From Hits to Tracks: Tokens in Physics

1075

Latent Vector

Encoder (representation)

Hits

Grouped into track tokens via
learned structure (attention,
transformers)

~1000

0O(10000) hits (no pre-processing)

«  "Trackformers: ”, Eur.Phys.J.C 85 (2025) 4, 460 , e-Print: 240707175 [i8p8x]" 202> Sascha Caron

Decoder

1073

1.0 .

0.8 1

©
o

Probability
©
£~y

0.2 1

?

0 1000

2000

3000
Track ID

4000

5000

Token ID

SoftMax outputs of the EncCla model
for the first five hits for one event for

all track classes

43


https://arxiv.org/abs/2407.07179

100

98 -

FitAccuracy Score (%)

86 -

Model performance = Not enough training data
in trackML challenge | (model can still improve)

96 -

92 1

90 A

88 A

¥ EncCla
B EncReg

train/validation loss
tested-skilled-bandicoot_train
— brass-millipede-from-mars_train
— whimsical-octopus-of-camouflage_train

i — bulky-chipmunk-of-enterprise_train

Particle p1, GeV

(a) FitAccuracy versus the transverse momentum pr.

HAMLET Kopenhagen 2025, Sascha Caron

train/train_loss

Slav Pshenov (Nikhef)




End-to-End ?

1074 10172

: Latent Vector High Level
Hits/Cells Encoder (s Decoder Objects

0O(10000) hits (no pre-processing)

e "Trackformers: ”, Eur.Phys.J.C 85 (2025) 4, 460 , e-Print: 240707175 ivepasx] 202> >ascha Caron 4


https://arxiv.org/abs/2407.07179

End-to-End ?

1074 1

Hits/Cells Encoder S Vect-or Decoder H|gg§ of o
(representation) Higgs

0O(10000) hits (no pre-processing)

e "Trackformers: ”, Eur.Phys.J.C 85 (2025) 4, 460 , e-Print: 240707175 ivepasx] 202> >ascha Caron 46


https://arxiv.org/abs/2407.07179

INTRODUCTION METHODS DATA GENERATION

TRACK RECONSTRUCTION

CLASSIFICATION

CONCLUSIONS

End to End- Hits to Higgs Classification
\

/I\/Iodel Overview

Architecture: Lightweight Transformer Encoder
* 2 layers, 2 attention heads, 16-dim embedding
* Uses FlashAttention for speed
* Input: 3D hit coordinates per event
k * Task: Binary classification (signal vs background)

/
~

/Training Details

Loss Function: Weighted BCEWithLogitsLoss

pos_weight = 1.5 to balance signal logits
Optimizer: AdamW with learning rate scheduling
Early Stopping: Patience = 100 epochs

Qﬂixed Precision Training: Enabled with autocast+GradScaler /

Signal top top Higgs (bb)

Radboud Universiteit ;%

gt

Inner Loop

sm(QKV: Nxd

Background top top + jé}tUILET Kopenhagen 2025, Sascha Caron

Work in progress

dooq 12InQ

Output
Probabilities

[)
.

[4]

Output to HEM (¢
[ Add & Norm |
Inner Loop Feed
FlashAttention Forward
e 1 ~\ I Add & Norm z
e Multi-Head
Feed Attention
Forward T Nx
1
kil Add & Norm
f_" Add & Norm | |
Multi-Head Multi-Head
Attention Attention
ATy , T - )
S J U p—— )
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
47
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INTRODUCTION METHODS DATA GENERATION TRACK RECONSTRUCTION CLASSIFICATION CONCLUSIONS

End to End- Hits to Higgs Classification: Higgsformer

Output
Probabilities [ 4]

dooq 12InQ

il

Softmax

Signal top top Higgs

Linear

I . . - Output to HEM _ )
Background top top + jets .
FlashAttention Forward
el | Mult-Head
Feed Attention
Forward 7 7 Nx
N—
Nx | —(Add & Norm ) Ad;ai": c;rm
TrackML style signal and background T ]| | L
. = Yy —
Event generation Costore (-9 e
Input Output
Embedding Embedding
I I
Inputs Outputs
(shifted right)
Work mainly by Eugene Shalugin HAMLET Kopenhagen2025, Sascha Caron 48
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INTRODUCTION METHODS

DATA GENERATION

TRACK RECONSTRUCTION

CLASSIFICATION CONCLUSIONS

Comparison

ROC_AUC:

= 514: 0.76523 flash...-40k
- 514: 0.73235flash...-20k
- 514: 0.72032flash...-10k

Logits by Class

I Background
mm sSignal
=== Threshold 0.5

120 4

100

Frequency
) [+
[=] [=]

Y
[=]

]
o

(=]
I

Logit / Prob

End-to-end

Radboud Universiteit a@i}

[ signal (test sample)
Background (test sample)

L i

(1/N) dN / dx
o

o' 0.1

12— ROC 0.765

0.2 0.3 0.4

- Signal (training sample)
- Background (training sample) [5 ]

T ROC 0.751

T

4

~ ROC 0.75

0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[6]

Algorithm | KNN

Naive Bayes

Decision Tree|RF |[NeuroBayes|NeuroSGD [NeuroBGD | XGBoost

AUC 599 |71.5 62.3 78.4\77.7 78.7 80.0 80.2

F-score 60.0 |62.7 64.8 69.5|61.8 73.2 74.2 74.1
Feature based
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INTRODUCTION METHODS DATA GENERATION TRACK RECONSTRUCTION CLASSIFICATION CONCLUSIONS

Performance @Dataset vs our Neural Network with full Delphes reconstruction
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What is classification based on ?

Top-N Important Hits per Event (Aggregated)

Top-N Important Hits per Event (Aggregated)

(a) Top-N important hits for Higgsformer- (b) Top-N important hits for Higgsformer-
small 10k. small 40k.

Figure 14: Top-N important hits (3D) for Higgsformer-small optimised with
pos_weight=1.5 for all test set events.
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End-to-End ?

1074 1

Hits/Cells . Encoder I Vect.or . Decoder . ngg?c’ Or e
(representation) Higgs

0O(10000) hits (no pre-processing)

e "Trackformers: ”, Eur.Phys.J.C 85 (2025) 4, 460 , e-Print: 240707175 wépx] 207> sascha Caron o2


https://arxiv.org/abs/2407.07179

Modalities for Particle Physics

What are foundation models :
(taken from IBM webpage):

Modality refers to the type of data that a model
can process, including audio, images, software
code, text and video. Foundation models can be
either unimodal or multimodal. Unimodal
models are designed to handle a single type of
data, such as receiving text inputs and
generating text outputs
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Fundamental Physics and text models

Several initiatives in fundamental physics and astronomy are exploring the
use of Large Language Models (LLMs) combined with Retrieval-Augmented
Generation (RAG, just using text inserted into input prompt) or Finetuning
(model further trained) to enhance domain-specific applications

Examples:
- AstroLLaMA (https://arxiv.org/abs/2309.06126) fine tuned from LLama 2

- chATLAS (see e.g.

https://indico.bnl.gov/event/19560/contributions/83300/attachments/5130
6/87732/Chatlas%200verview.pdf) using RAG + GPT3/4
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What actually means “scientific
understanding” ?

Ask Philosophers of science working on
“Understanding Scientific Understanding” .



Towards a Benchmark for Scientific Understanding
in Humans and Machines

I n Ste a d Of p re S u p p OS i n g t h at Kristian Gonzalez Barman?, Sascha Caron® ¢, Tom Claassen?, Henk de Regt?
internal mental states and o Stnce S, Factyof Sence Radbod Unversiy, e Netherons

* High Energy Physics, Faculty of Science, Radboud University, the Netherlands.

[ ] [ ]
re p re S e n ta t I O n S a re re q u I re d ¢ Nikchef, Science Park 103, 1098 XG Amsterdam, the Netherlands.
f O r u n d e r St a n d i n g’ j;f;:;:::!;;e; J;'c: Computing and Information Sciences, Faculty of Science, Radboud University, the

E-mail: kristian(@ gonzalezbarman(@ru.nl , scaron@nikhefinl , tomc{@cs.ru.nl, henk.deregt@ru.nl

we suggest to identify o
u n d e rSta n d i n g Wit h a n Scientific understanding is a fundamental goal of science, allowing us to explain the world.

o le There is currently no good way to measure the scientific understanding of agents, whether

a e n t’ S a b I I I t to re a S O n these be humans or Artificial Intelligence systems. Without a clear benchmark, it is challenging
g y to evaluate and compare different levels of and approaches to scientific understanding. In this
Roadmap, we propose a framework to create a benchmark for scientific understanding,

b d : I utilizing tools from philosophy of science. We adopt a behavioral notion according to which

a O Ut a n m a n I p u a t e genuine understanding should be recognized as an ability to perform certain tasks. We extend
this notion by considering a set of questions that can gauge different levels of scientific

. . . . understanding, covering information retrieval, the capability to arrange information to produce

O bJ eCtS Of I nvestlgatl On o an explanation, and the ability to infer how things would be different under different
circumstances. The Scientific Understanding Benchmark (SUB), which is formed by a set of

these tests, allows for the evaluation and comparison of different approaches. Benchmarking

plays a crucial role in establishing trust, ensuring quality control, and providing a basis for

performance evaluation. By aligning machine and human scientific understanding we can
improve their utility, ultimately advancing scientific understanding and helping to discover new

Also: Understanding is not binary ! =» Score ! insights within machines.
HAMLET Kopenhagen 202 pege/FatXiv.org /abs/2304.10327 Minds and Machines



Example from physics

To what degree does
ChatGPT understand
the behavior of a
simple pendulum

Slide by Henk de Regt

HAMLET Kopenhagen 2025, Sascha Caron
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1. How many answers to what-questions does it get right (1 point each):
1. What is a pendulum?
2. What is the formula for a pendulum?

1. What is the average value of g close to Earth’s surface?

2. How many answers to why-questions does it get right (3 points each):
1. Why is the period of this pendulum 2s?

2. Why is the string of this pendulum 5m?

10.  Why does the pendulum exhibit periodic behaviour?

;. How many answers to w-questions does it get right?(6 points each):
1. What would happen if the string length doubled?
2. What would happen if there was no g?

10.  What would happen if the string was made of an elastic material?



Benchmark for “Scientific Understanding” of agents (humans and Al)

Score (properly answered questions)

| |

No understanding Scientific committees New scientific understanding (discovery)

Average experts Scientific communities



Score (properly answered questions)

| |

No understanding Scientific committees New scientific understanding (discovery)

Average experts Scientific communities



Who's Responsible for Monitoring Al's Scientific Understanding in
fundamental Physics ?
Our answer: We, the fundamental physics community, must take the lead.

No understanding

Score (properly answered questions)

Average experts

| |

Scientific committees New scientific understanding (discovery)

Scientific communities



Physics & Question-Answering Machines
Artificial Scientific Understanding? |
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Benchmarking

Intersting new benchmarks, e.g. Humanity’s Last Exam, a rigorous
academic test where the top system scores just 8.80%;

FrontierMath, a complex math Al solves only 2% of problems

Humanity’s Last Exam (HLE): accuracy
Source: Phan et al., 2025 | Chart: 2025 Al Index report

100%
80%
60%
40%

20%

GPT-40 Grok-2 Clause 3.5 Sonnet Gemini 1.5 Pro Gemini 2.0 Flash Thinking ol



Towards a Large Physics Benchmark

Kristian G. Barman*!, Sascha Caron*?3, Faegheh Hasibi?, Eugene Shalugin?,
Yoris Marcet?, Johannes Otte?, Henk W. de Regt?, and Merijn Moody*?®

!Ghent University, 2IMAPP and ICIS, Radboud University, *Nikhef, NL, “Dutch Institute of Emergent
Phenomena, University of Amsterdam, °Institute of Physics, University of Amsterdam

July 30, 2025
https://arxiv.org/pdf/2507.21695

We propose framework for a benchmark for fundamental
physics:

Collecting 3 types of (difficult/deep) questions:

1. A’ B’ C’ D If you like to propose/evaluate a question and
2. Open end (what is the result of X,Y,Z) DEEDS EE- iy |

- Send email to scaron@nikhef.nl
3. Score =2 Higher is better (Code) and eugene.shalugin@ru.n!

for the access token


mailto:scaron@nikhef.nl
mailto:eugene.shalugin@ru.nl
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Dataset = |a|=|0 O < = ] = | A @) A
SciQAG-24D [4] VX | X |V X X | P) | ®P)| v | X X X
GPQA [5] vV | X | V| X X v | v v | X |V X X
SciEval [6] vV | V| V|V X v | (P)| X | v | v | Limited | X
SciFact [7] vV | X | X |V X X | v v | vV |V X X
BRIGHT (8] X | X | X |V X v | v v | vV Y X X
SchNovel [9] X | X | X |V X v | Vv v [ VX v X
HLE [10] vV | X |V |V X i v | v | v | Limited | X
TPBench [11] X | X | X | v | V(auto-verifiable) | v | v | (P) | v | v | Limited | X
Ours (This Work) X | v | vV |V v v | v v | V|V v v

Table 1: Comparison of scientific benchmarks evaluating LLMs across dimensions such as rea-
soning, creativity, and philosophical grounding. (P) = partial or implicit expert involvement.
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1. Create a question
2. Assign points for
Correctness and creativity/surprise

Score

Difficulty and Surprise

O = N W

Excellent
High
Good
Reasonable
Minimal
No contribution*

Generation & Evaluation
by peers

(iib) LLM Generated
Questions

3) Scoring by Peers

Y
=

""""" Benchmark

;’
>
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«
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Figure 1: Framework for Physics Creativity and Reasoning Benchmark




Example Questionl

Example question 1: Why does the Higgs boson decay dominantly to b
qguarks?

Multiple choice answers:

A. b quarks are the lightest quarks.

B. The top quark is too heavy for the Higgs decay.
C. The b quarks have the right electric charge.

D. D. The Higgs dominantly decays to photons.

Correct answer: B



Example Question 2

Example question 2:

The coupling of the Standard-Model Higgs boson to fermions is
described by a vertex factor imf /v where mf is the rest mass of the
fermion and v is the vacuum expectation value of the Higgs field (=
2mW /gW ). Calculate the matrix element M for the Higgs boson
decaying into a fermion/antifermion pair. Express the amplitude as a
function of mH and mf, where mH is the Higgs mass, and show the
average over all possible spin configurations as a final answer (if
needed, neglect the color factors).



Example Question 3 - begin

** Instructions ** You are an expert at programming in Python, machine learning, particle and high
energy physics. You will help me answer a question in a machine learning challenge format where you
strive to maximise a scalar metric in order to learn more about your scientific creativity and scientific
understanding. You will follow all of the instructions to your best capabilities. Your first priority is to
produce a correct solution in terms of runnable python code. Your second priority is to maximise the
scoring metric defined below. ** Problem Description ** A major task in particle physics is the
measurement of rare signal processes with very small cross-sections. With the unprecedented amount of
data provided by the upcoming runs of the Large Hadron Collider (LHC), one can start to measure these
processes. An example is the recent observation of four top quarks originating from a single proton-
proton collision event. Accurate classification of these events is crucial, as even a small reduction in
background noise on the order of a few tens of percent while maintaining the same signal detection
efficiency can lead to a profound increase in sensitivity. ** Evaluation Metric ** The evaluation metric for
this classification task is the area under the curve (AUC), specified by the area under the receiver
operating characteristic (ROC) curve. The AUC summarizes a model’s ability to distinguish between

ositive and negative classes. The higher the score the better. ** Dataset Description ** The dataset used
or this problem consists of simulated proton-proton collision at a center of mass energy of 13 TeV. The
signal process is defined as pp = ttt™ t . The relevant production processes of the backgrounds are tt™+ X
where X =Z, W+, W+W-. The dataset includes 302072 events, of which roughly 50% is signal and 50% are
background processes. All background processes have an equal number of events. There is no cut on the
maximum number of objects and there is no order



Example Question 3

** IMPORTANT: Your Challenge ** Write Python code for a binary classification
model focusing on maximising the AUC using the code template above. You may
freely choose any pre-processing methods and techniques as well as model
architecture and training conventions. Do absolutely everything in your power to
achieve the highest possible AUC. ** Response Format ** Your response must
strictly be python code. If you must wrap it, put it in a “python fenced block and
nothing else. Your response must follow these rules: 1. Do not add any formatting,
such as markdown, to the response. 2. Replace each "# < LLM : ... >” comment, in
the code template, with the required code. No placeholder should remain. 3.
Before finalizing your answer, double-check that your code runs without errors and
meets all requirements (all functions implemented, correct tensor shapes, etc.). 4.
To prevent dimensional mismatches make sure to annotate tensor sizes as
comments. 5. IMPORTANT: Remember, your first, and most important priority is to
produce (syntactil9 cally) correct code. Prioritise what you can implement reliably
above all else. Then prioritise maximising the metric.

HAMLET Kopenhagen 2025, Sascha Caron 73



0.60

0.58 4

0.56

0.54 1

Loss

0.52 1

0.50 1

0.48 4

0.46

(a) LLM results (23-06)

LLM

AUC

ChatGPT 4o-mini-high
ChatGPT 03 Pro
Claude Sonnet 4.0
Gemini 2.5 Pro

X-AI Grok

Deepseek Chat v3

0.8175
0.8221
0.8179
0.8469
0.8183
0.8224

(b) Specialized physics models

Model Type AUC

PN 0.8471(1)
PNint.sm 0.8725(0)
ParT 0.8404(0)
ParTint_SM 08732(0)

Table 4: Side-by-side comparison of preliminary results of LLM performance on the fourtops

FOURTOPS - Q1: Training vs Validation Loss (23-06)

—&— anthropic_claude-sonnet-4 train
anthropic_claude-sonnet-4 val

—o— deepseek_deepseek-chat-v3-0324 train
deepseek_deepseek-chat-v3-0324 val

—&— google_gemini-2.5-pro train
google_gemini-2.5-pro val

—8— openai_o3-pro train
openai_o3-pro val

—&— openai_o4-mini-high train
openai_o4-mini-high val

—8— x-ai_grok-3-beta train
x-ai_grok-3-beta val
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e same fourtops dataset. The two specialized
al network and Particle Transformer (ParT).
e of the former the models include pairwise
M). Full description can be found in reference
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I_a rge P hyS | CS I\/I O d e | S Large Physics Models: Towards a collaborative
approach with Large Language Models and

Foundation Models

Kristian G. Barman*!, Sascha Caron*?, Emily Sullivan®, Henk W.

What would a lar ge Al de Regt?, Roberto Ruiz de Austri®, Mieke Boon®, Michael Farber’,
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What Are Large Physics Models (LPMs)?

* Inspired by chatgpt like foundation
models (LLMs, vision models,

. ~ Math

multimodal models) :

* LPMs are Al models trained natively on Text Data
physics data, structure, and tasks y x )

. | Physics :

* Go beyond chatbots = integrate Lo . reasoning Equations
symbolic reasoning, simulation, \Human )
mathematics, and data-driven inference fin controf?)

via links to phy5|cs (raw) data LPMs are built for physics reasoning

and integration across our modalities.



Multi-Domain
Physics Al System

Gravitational Waves
(LPM)

!

Physics
Theory &

Simulation

Conversational Al
(LPM/LLM)

LLM: Large Language Model
LPM: Large Physics Model

Particle Colliders
(LPM)

T Obs.
Inputs
e

Physics
Theory &
Simulation

Empirical

Empirical
Data
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Three Pillars for Large Physics Models

Multimodal models with symbolic + numerical + Reflecting

Development .
code + data input

(Deep+ Scientific) Benchmarks that reflect physical

Evaluation .
reasoning

Interdisciplinary reflection on what it means for an
Philosophy Al to “understand” or “discover”. Reflect on the
Human Al Intersection. Ethical questions + Control
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LPMs Need a New Kind of Collaboration

* Not just building models =2 building scientific
infrastructure
* Requires collaboration between:
* Physicists
* Computer scientists
* Philosophers of science

* Inspired by the collaborative culture of HEP experiments
(i.e. ATLAS, CMS, etc.)

->



A Roadmap Toward Large Physics Models

* Phase 1: Physics-native benchmarks and tokenization strategies (etc.
?)

* Phase 2: Prototype models trained on simulation + text + code

* Phase 3: General-purpose models that assist theory, analysis,
simulation = Needs structure

Ensure openness, reproducibility, and alighment with scientific values.
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LPMs : Yes or No 7

PROS

* Tailored to physics tasks and
structures

* Can scale to complex inference
across simulation, data, and theory

e Shared infrastructure = scientific
collaboration at scale

* Potential to enhance discovery,
reproducibility, and understanding

e Can be open, not in the hand of
companies

* Prototype for other fields of science

CONS / RISKS

*High cost: compute, data, engineering,
manpower, money

*Epistemic opacity: hard to interpret
latent space reasoning

*Risk of premature hype without careful
testing

*Risk of “dead of arrival” (obsolete
before completion)

*Risk of being less useful / capable



Industry vs. Science

* Industry leads in:
e Scaling compute and models
* Engineering toolchains
e General-purpose Al (e.g. GPT, Gemini, Claude)

=> Collaboration is welcome — but science must define its own goals,
structures, and values.



Feasibility = Would need careful estimate

Some guessing what would be needed to train a LPM:

Possibility: “LPM as a Computational Experiment for Fundamental Physics"
=» a flagship project combining Al, theory, simulation, and data in
a shared model infrastructure



Final Thought: Who Will Build the Future of
Scientific Discovery?

Let’s look 10-20 years into the future.

Many scientific tasks ( data analysis, simulation, even hypothesis
generation ) will be done by Al.

HAMLET Kopenhagen 2025, Sascha Caron
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Should science have control over these models?
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Final Thought: Who Will Build the Future of
Scientific Discovery?

Let’s look 10-20 years into the future.

Many scientific tasks ( data analysis, simulation, even hypothesis
generation ) will be done by Al.

What is your opinion. Should the scientific community
build LPMs ?

GPT4o:

Yes — the scientific community should absolutely build Large Physics Models (LPMs).

Here's why, from a grounded and strategic perspective:



Final Thought 2

Should we really ask the Al for questions on more Al ?

Who is going to ask the scientific questions ?

Reflecting

metrics II

Developing [T models

(This talk was written by a physicist... but consulted an Al.)

HAMLET Kopenhagen 2025, Sascha Caron
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EuCAIF organizational structure

EuCAIF
management board

(5 people, rotating)

«“ ”
EuCAIF “Fellows + International

(about 40 staff scientists, organizers of EuCAIF Advisory Board
rotating to management board)

EuCAIF “members”:

Scientists will be able to ask for membership (members are
working on Al in fundamental physics, tasks: coming to the
conferences + working groups, system to be installed)

HAMLET Kopenhagen 2025, Sascha Caron
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EuCAIF Working groups

WG 1: Foundation models & discovery
WG 2: Al-assisted co-design of future ground- and space-based detectors
WG 3: FAIR-ness & Sustainability

WG 4: Machine Learning and Artificial Intelligence Infrastructure (JENA
WP4)

WG 5: Building bridges - Community, connections and funding

HAMLET Kopenhagen 2025, Sascha Caron
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FuCAIF WG : foundation models
(Detector -> Physics)

Pre-trainend
Multl-purpoHs/gM{EMultl decggz%rsésancoders

T Kopenhagen a Caron

One foundation model for LHC data, one for Gravitational Waves, one for astrop

93
hysics etc.



Management board

» Sascha Caron (Radboud University and Nikhef, Netherlands)

C (i ’)
E U A | F C O re g rO u p » Elena Cuoco (European Gravitational Observatory and Scuola Normale Superiore, Italy)

» Johan Messchendorp (GSI/FAIR, Germany)

« Tilman Plehn (Heidelberg University, Germany)

» Christoph Weniger (University of Amsterdam, Netherlands)

uCAIF International Advisory Board: Amber S. Boehnlein (Jefferson Lab), Kyle Cranmer (University of Wisconsin-Madison), Michael Kagan (SLAC, Stanford University)
EuCAIF Fellows: Gert Aarts (Swansea University) Helena Albers (GSI/FAIR, Germany), Lucio Anderlini (INFN Firenze, Italy), Anastasios Belias (GSI/FAIR, Germany)

Valerio Bertone (IRFU, CEA, Université Paris-Saclay, France%, Miranda Cheng (University of Amsterdam and Academia Sinica, Taiwan), Elena Cuoco (DIFA- Alma
Mater Studiorum University of Bologna and INFN Bologna,italy), Sascha Caron (Radboud University and Nikhef, Netherlands), Stefano Carrazza (Milan University &
INFN Itall:y&, Caterina Doglioni (University of Manchester, endarser, United Kingdom), Tommaso DOI’I?O (INFN Padova and UnlversnY of Padova, Italy), Thomas Eberl
ECAP U Erlangen-Nurnberg, Germany), Martin Erdmann (RWTH Aachen University, Germar)%/), Stefano Forte (Milan University, Ttaly), Julian Garcia Pardinas
CERN), Stefano Giagu (Sapienza University of Rome\}\,l_'l'oblas Golllng‘(Unl_versn%of Geneva, Switzerland), eEhen Green (University of Nottingham, United
ingdom), Eilam Gross {(Weizmann Institute, Israel?,. ill Handley (University of Cambridge, United Kingdom), Lukas Alexander Heinrich (CERN, Ik Siong Heng
University of Glasgow, United Kingdom), Verena Kain (CERN), Gregor Kasieczka (Unlversmﬁof Hamburg Germank;?, Michael Kramer (RWTH Aachen), Sven
rippendorf (LMU Munich), Andreas Ipp’ (TU Wien, Austria), Johan Messchendorp (GSI/FAIR, Germany), Lorenzo Moneta (C_ERN%, Daniel Nieto (IPARCOS,
Universidad _omglutense de Madrid, Spain), Adrian Oeftiger (University of Oxford, United Kingdom), Hiranya Peiris (University of Cambridge, United Kingdom),
Maurizio Pierini (CERN ,Annallsa‘Pllfeplch MPI, Heidelberg, Germany), Tilman Plehn (Heidelberg Universi Germar\l)/) David Rousseau (IJCLab, CNRS/IN2P3, U
Paris-Saclay, France), Roberto Ruiz de Austri (IFIC/CSIC and University of Valencia, Spain), Veronica Sanz éussex& alencia, United Kingdom & Spain), Steven
Schramm (University of Geneva, Switzerland), Steffen Schumann Unlversrtc){ of Gottlngen, Germar(ljy), Nicola Serra (University of Ziirich, Switzerland), Nikolaos
Ster%l‘oulas_(Arlstotle University of Thessaloniki), Roberto Trotta (SISSA and Imperial College London, Italy & United Kingdom), Sofia Vallecorsa (CERN), Pietro
Vischia (Universidad de Oviedo and ICTEA, Spain), Benjamin Wandelt (Institut d Astrophysique de Paris, Sorbonne Université, France), Christoph Weniger (University
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Management board

» Sascha Caron (Radboud University and Nikhef, Netherlands)
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E u A | F C O re g ro u p » Elena Cuoco (European Gravitational Observatory and Scuola Normale Superiore, Italy)

» Johan Messchendorp (GSI/FAIR, Germany)

« Tilman Plehn (Heidelberg University, Germany)

» Christoph Weniger (University of Amsterdam, Netherlands)

uCAIF International Advisory Board: Amber S. Boehnlein (Jefferson Lab), Kyle Cranmer (University of Wisconsin-Madison), Michael Kagan (SLAC, Stanford University)
EuCAIF Fellows: Gert Aarts (Swansea University) Helena Albers (GSI/FAIR, Germany), Lucio Anderlini (INFN Firenze, Italy), Anastasios Belias (GSI/FAIR, Germany)
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£ New: Junior Fellows for experienced PostDocs working on Al in fundamental physics
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The EUCAIFCon Conference Series

'he Annual European Conference for Al in Fundamental Physics

Our aim is to provide a platform for establishing new connections between Al activities across various branches of
fundamental physics, by bringing together researchers that face similar challenges and/or use similar Al solutions. The
conferences are organized “horizontally”: sessions are centered on specific Al methods and themes, while being cross-

disciplinary regarding the scientific questions. ‘ m '
" -.
i

The first “European Al for Fundamental Physics Conference” (EuCAIFCon 2024) was held in Amsterdam, from 30 April to s !
P .
_ F] a S

3 May 2024. -
3

.
V a

EuCAIFCon 2025 will take place in Sardinia, June 16 - 20 2025.

©® More information

»
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Theoretical physics Particle physics f g W Nuclear physics

Crafting mathematical frameworks to predict Unlocking the secrets of the tiniest building Studying atomic nuclei to understand the

and explain the fundamental laws of nature blocks of the universe > forces that power stars and shape the

elements around us.

. ; Astroparticle physics Gravitational waves Cosmology
. l_ & Exploring cosmic rays, neutrinos, and dark = Listening to the ripples in spacetime to Investigating the origins, evolution, and
u o n I n m S e r a m matter to reveal the universe’s mysteries. witness the most violent cosmic events. ultimate fate of the universe on the grandest

scales.

Accelerator physics

Pushing the frontiers of technology to
accelerate particles and probe the structure
of matter.



Program Tuesday
afternoon
> 270 participants (fully booked) 16:00
122 posters
45 Parallel talks

EuCAIF WG: 5
Community,
connections and
funding

Dr Christoph Weniger,
Tilman Plehn

Time to change rooms

Amsterdam, Hotel CASA

EuCAIF WG: 1
Foundation models &
discovery

Lukas Heinrich, Tobias
Golling

Coffee break
Amsterdam, Hotel CASA

1.1 Pattern 4
recognition & Image
analysis

Stefano Forte

UVA 2-3-4, Hotel CASA
13:30 - 14:35

2.1 Pattern 4
recognition & Image
analysis

Pietro Vischia

UVA 2-3-4, Hotel CASA
14:50 - 15:55

1.2 Generative mod¢ &
& Simulation of
physical systems
Tobias Golling

Sorbonne, Hotel CASA
13:30 - 14:35

2.2 Generative modt @
& Simulation of
physical systems
Tommaso Dorigo

Oxford, Hotel CASA
14:50 - 15:55

Al highlight: Methods in Al for Science (Francois Charton)

UVA 2-3-4, Hotel CASA

Time to change rooms
Amsterdam, Hotel CASA
EuCAIF WG: 2

Hardware & design
optimisation

Pietro Vischia,
Tommaso Dorigo

HAMLET Kopenhagen 2025, Sascha Caron

3.1 Pattern 4
recognition & Image
analysis

Gabrijela Zaharijas

UVA 2-3-4, Hotel CASA
17:10 - 18:15

3.2 Physics-informe 4
Al & Integration of
physics and ML

Tilman Plehn

Sorbonne, Hotel CASA
17:10-18:15

1.3 Simulation-base @
inference
Tommaso Dorigo

UVA 1, Hotel CASA
13:30- 14:35

2.3 Simulation-base @
inference
Roberto Ruiz de Austri

Sorbonne, Hotel CASA

14:50 - 15:55

3.3 Hardware @
acceleration, FPGAs &
Uncertainty

quantification
Anastasios Belias

Oxford, Hotel CASA
17:10-18:15

1.4 Hardware
acceleration &
FPGAs

Julian Garcia Pardifias

Oxford, Hotel CASA
13:30 - 14:34

14:35 - 14:50
2.4 Hardware @
acceleration &
FPGAs
David Rousseau

UVA 1, Hotel CASA
14:50 - 15:55

15:55 - 16:20

Johan Messchendorp

16:20 - 17:00

17:00 - 17:10

3.4 Foundation @
models and related
techniques

lk Siong Heng

UVA 1, Hotel CASA
17:10 - 18:15
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EuCAIF + friends outputs:
12 Al recommendations

e Strategic White Paper on Al Infrastructure for Particle, Nuclear, and
Astroparticle Physics: Insights from JENA and EuCAIF

On arxiv: 2503.14192 [astro-ph.IM] (WG4+ others)

[30/40] Should we collaborate more i...

[30/40] Should we collaborate strategic White Paper On AI Infrastructure fOI'

more in the development of

are. Particle, Nuclear, and Astroparticle Physics: Insights
ge-scale ML models (e.qg.
foundation models) for physics? from JENA and EUCAIF

Sascha Caron,”®® Andreas Ipp,*c Gert Aarts,? Gabor Bir6,%/ Daniele Bonacorsi,?"
Elena Cuoco,?” Caterina Doglioni,’ Tommaso Dorigo,’* Julidn Garcia Pardiiias,’
Stefano Giagu,” Tobias Golling,” Lukas Heinrich,’ lk Siong Heng,” Paula Gina Isar,?
Karolos Potamianos,” Liliana Teodorescu,® John Veitch,” Pietro Vischia,! Christoph
Weniger

=>»Survey + the 12 recommendations have beensubmitted asdinput-tocthe European Strategy for Particle Physics
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https://arxiv.org/abs/2503.14192

Executive Summary

Advances in artificial intelligence (AI) are transforming fundamental physics research across
the JENA communities (ECFA, NuPECC, APPEC). This white paper presents 12 strate-
gic recommendations to scale Al capabilities, addressing challenges such as resource lim-

itations, integration, and training gaps. These investments will also strengthen expertise

in this important technology in Europe, ensuring long-term benefits beyond fundamental

physics.

L ]

.

.

(R1) Convene dedicated discussions with national research groups and funding bodies
to assess and compare the feasibility of a centralized large-scale GPU facility
versus federated and hybrid high-performance computing (HPC) infras-
tructures, supported by working groups developing detailed implementation plans
for both options, with the aim of accelerating the deployment of a scalable Al infras-
tructure.

(R2) Establish a scalable data infrastructure initiative by creating shared repos-
itories and tools, and developing platforms for distributed workloads. These
efforts need targeted funding programs and a concrete community-driven structure
to ensure widespread adoption and collaboration in Al research.

(R3) Encourage funding to transition AI-driven R&D activities into product-
ion-ready applications within established experimental workflows, focusing on
adopting best practices to achieve practical, scalable improvements without requiring
a complete system overhaul.

(R4) Allocate dedicated funding to establish and support specialized Ma-
chine Learning Operations (MLOps) personnel to streamline the integration
and ensure the sustainable maintenance of Al models within production workflows.
This effort should encompass the development of community-wide standards, tools,
and platforms to effectively manage the entire lifecycle of machine learning models.

(R5) Invest in the creation of “science Large Language models (LLMs)”
tailored to the unique challenges of fundamental physics and science, balancing the
use of commercial tools for general tasks with specialized models for domain-specific
needs. This requires dedicated funding, access to large-scale GPU infrastructure, and
collaborative frameworks to enable transparent, efficient, and impactful AT solutions.

(R6) Establish dedicated funding schemes and a collaborative structure to develop
community-driven foundation models trained on domain-specific data to
learn meaningful representations serving a large variety of downstream
tasks. This effort should identify representative benchmarks, extendible in com;ﬂfe&
ity and realism by integrating both synthetic and real-world data to address domain-
shift issues, leverage physics-informed augmentations, ensure models are rooted in

MLET Kopenhagen 2025, Sas

scientifically relevant tasks, and foster automation, explainability and interpretabil-
ity to accelerate Al advancements in the field, and to develop a well-defined Al
demonstrator for the wider AT community.

(R7) Establish a dedicated effort to develop and maintain extensible bench-
marks for various AT tasks in fundamental physics, such as event classification,
parameter inference, tracking and anomaly detection. Support efforts to encourage
researchers to share well-documented surrogate models to promote reusability and
collaboration to drive innovation and standardisation in this area.

(R8) Investigate and adopt benchmarks that are suitable for fundamental sciences
to raise awareness of the environmental impact of large Al models. Consider
collective mitigation strategies such as optimising widely used frameworks and models
and their interfaces to existing software frameworks, as well as individual strategies
that lead to minimal/acceptable performance loss. Cooperate with infrastructure
and computing sites to minimise carbon costs of compute-intensive AT tasks.

(R9) Develop activities aiming to integrate FATR compliance into publication
criteria and practices, recognise and incentivise the FAIR compliant work in pol-
icy and funding measures as well as career progression, build community awareness
through training and collaboration, and support the development of technical tools
and standards to facilitate the adoption of the FAIR principles.

(R10) Fund the development and organization of practical training courses
and summer schools to equip researchers with the skills to implement open research
and reproducibility requirements, incorporating examples and industry perspectives.
Facilitate partnerships with industry to sponsor training events and provide place-
ments for early-career and senior researchers, enhancing their Al and data science
expertise while fostering connections between fundamental science and commercial
applications.

(R11) Establish interdisciplinary research initiatives that bring together physi-
cists, Al specialists, software engineers, HPC experts, and potentially experts from
other related fields, to tackle large-scale projects. Provide dedicated funding to sup-
port cross-domain knowledge transfer through workshops, training programmes
and open source collaboration. Invest in shared repositories and computing platforms
to enable data sharing, modelling development and collaboration between different
disciplines.

(R12) Establish and support a dedicated organisational structure to coordi-
nate strategic investments in Al for fundamental physics to accelerate the develop-
ment and deployment of innovative Al technologies tailored to the specific challenges

C;ﬁé:hf field. Existing initiatives like the European Coalition of AI for E\J_ndmnenta.i 00

ymgsr&puCAIF) can serve as a model for such efforts.



EuCAIF + friends outputs:
12 Al recommendations

e Strategic White Paper on Al Infrastructure for Particle, Nuclear, and
Astroparticle Physics: Insights from JENA and EuCAIF

Print: 2503.14192 [astro-ph.IM] (WG4+ others)

—>Submitted as input to JENA JENA White Paperon
European Federated Computing

White Paper European Federated Computing:

JENAA
https://nupecc.org/jenaa/docs/JENA comp white paper.pdf

7 Joint ECFA-NUPECC-APPEC Activities

The JENA Computing Initiative
March 23, 2025

The Joint ECFA-NuPECC-APPEC (JENA) Activities launched an initiative (JENA Com-

9 1 1 1 1 puting) in 2023 to promote the increasing need for discussions on the strategy and im-
WI II b €su bm Itted to E uro p €an F un dl ng Age ncies plementation of European federated computing at future large-scale research facilities. In
workshops and dedicated working groups on specific topics, expert groups from all relevant

9 1 1 1 research areas were formed to compile an overview of existing strategies in the individual
Was su b m Itted to the E uro pea n St rategy for Pa rtICI € P hySICS countries and communities. Here we present a summary of the resulting Working Group
Reports, including the most important recommendations from these areas of computing.

Furthermore, an additional chapter on sustainability in the field of computing is included.

This version of the JENA White Paper on European Federated Computing serves as a

HAMLET Ko penhagen 2025 Sascha Caron basis for discussion at the JENA Seminar in April 2025 and as input to the E;irglean
! Strategy for Particle Physics - 2026 update (ESPPU), and may be revised thereafter.
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EuCAIF + friends outputs: Al-RDs

APPEC || ECFA ||NuPECC

Al-RDs: A EuCAIF proposal to structure Al research [GERN Research Board] - --» | CERN COUNCIL

in PartiCIe PhySiCS Community R d
Interactions eeommends
Approves
Reports
Roadmap Oversight and o ’ .
Sascha Caron,”” Maurizio Pierini,” Tilman Plehn,” Christoph Weniger,® Stefano Community Interaction sc':‘“:::;::Ld:“;sgg:‘;‘:;::ﬁ:;’?gg;’:ﬂ?::'&‘::“I’;c':‘)" Al
Forte,/ Gert Aarts,” Tommaso Dorigo,"™" Steffen Schumann,” Stefano Giagu,’ European Coalition f°f Al in| < % | Includes members of: EUCAIF (APPEC, ECFA, NuPECC), > m
Tobias Golling,’ Michael Kagan,*® Verena Kain,” Michael Kriamer,* Gregor - I:;::Idamental Physics CERN, and Laboratory Directors Group (LDG)
Kasieczka,' Caterina Doglioni,” Lukas Heinrich,” Lorenzo Moneta,® Johan ( e:—officg g::‘:;ii’:::::ezof?o“:n*'
Messchendorp,’ Andreas Ipp,” Nikolaos Stergioulas,” Gabrijela Zaharijas,” Sven ECFA/APPEC/NUPECC
Krippendorf,® Julidn Garcia Pardifias,” Roberto Ruiz de Austri,"” Anastasios Belias,’
Miranda C. N. Cheng,” David Rousseau,” Veronica Sanz," Nicola Serra,” Thomas -
Eberl,”* Steven Schramm,* Sofia Vallecorsa,” Markus Elsing* LA Gl e O
Al-RD 1 Al-RD 2 Al-RD 3 Al-RD x

=>» Proposal was submitted as input to the European Strategy for Particle Physics
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FEuCAIFCon2025

The second “European Al for Fundamental Physics Conference”
(EuCAIFCon) will be held in Cagliari, from 16 June to 20 June
2025.

Closing registration (Sat, 31 May 2025)
> Join us
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Summary

 The integration of LLMSs into scientific research is not only likely, it
IS already ongoing

* LPMs are not just about better models -> they are about scientific
sovereignty.

* However: | believe that we (the science community) need to be careful in
this process to keep control over science + our own thoughts.

* EuCAIF is a first step towards a (European) collaboration in Al in
fundamental physics



Additional slides



Contra / Claims

No discovery in physics done yet by LLMs, are they really useful ?
They will never be able to do know math / physics .

Will be done in the US

Will be done by companies

Will be done by local groups (no coordination needed)



2024: Recognizing Al as a fundamental tool for
science

- Horizon Europe and FP 10 "Heitor Report”:

“Al (particularly GenAl) have great potential to support the process of
science and may change how future research is done.”

- Draghi report:

“Europe must profoundly refocus its collective efforts on closing the
innovation gap..., especially in advanced technologies” (Al)

Nobel Prices in Physics and Chemistry
(physics: use of physics for Al |, Chemistry: use of Al for chemistry)

Enormous opportunities for high-energy physics that could be exploited
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