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On experience

Sentence:

“Experience is simply the name we give our mistakes”,
|Oscar Wilde]

Lemma:

“I didn’t fail. It was a learning experience”,
|Anonymous]



First encounters

On a dark and stormy night in 2001, PostDoc Andreas Hoecker called me into
his office: “Troels, come and see this...”

It was a piece of Fortran code, that he had gotten in an Email:

It was a Neural Network!

PROGRAM TPK

! The TPK Algorithr

! Fortran 90 style
IMPLICIT NONE

INTEGER L
REAL 1 ¥
. REAL, DIMENSION(O:10)} HE ¢
For context, I was working on READ (*,*] A
po 1 =10, 0, -1 ! Backwards

the BaBar experiment at SLAC, Y = FuNla(L))

IF ( ¥ < 400.0 ) THEN
WRITE (*,*) I, ¥

focusing on B to DKpi decays: —

WRITE (*,*) I, ' Too large'

END IF
E}IYU END DO
d CONTAINS ! Local function
<:::::: FUNCTION FUN (T}
d } REAL :: FUN
u} ™ REAL, INTENT(IN) :: T
FUN = SQRT(ABS (T)) + 5.0%T*+3
b . ¢ END FUNCTION FUN
Ifo{ }I)— END PROGRAM TPK
d d




First encounters

Not having any

experience with ML,

I did a lot of mistakes:

* No description of
architecture!

* No HP optimisation.

e No check of data-MC
correspondence.

e No loss / epoch plot.

I had not thought of any
way to cross check and
calibrate the output.

But... simply throwing
myself at it was a great
experience to build on.
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Higgs Search/Discovery



Motivation

Problem:

Given a number of clean ZZ events,
determine if they are Higgs or SM diboson events!

Possible solution:

Since Higgses are produced quite differently then SM diboson ZZ,
their angular distributions differ!

t +
t 7 Zl
Vari . . p H | 9 3 ' 91 2
ariables available /used: , ol 1Y\
¢ Higgs rapidity ~2L P e P
e Angle Z to Higgs in Higgs CM /’ q > !
® Angle lep-to Zin ZCM 0, q
¢ Angle lep- to Z* in Z* CM ()

e Fraction of mZ+mZ* to mHiggs
Note: H denotes the ZZ system, Higgs or not!



Frequency

Normalized

Generator level comparison
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Frequency

Normalized

After fiducial requirements
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Combining variables

Using the 5 variables (i.e. including rapidity) in a BDT (100 trees, 4 nodes):

TMVA overtraining check for classifier: BDTG

0 IMVA

I LI

7 _ Slgnlal {test samphe) il" Slgnal (trainmg samplei

1~ | Background (test sample) = Background (training sample) _

olmogorov-Smirnov test: signal (background) probablltt* = 0.266 (0.338) I

(1/N) dN/ dx

'IllllIIII|Illllllllllllllllllﬂ

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%
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BDTG response



Frequency

Combined angular variable
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Frequency

Combined angular variable
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2mu2e (123.3 GeV)
Prob(c2=H) = 0.690

l

|
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Prob(c3=H) = 0.677
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Thanks to Fabien

for providing these.
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Combined angular variable
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Conclusion:

The 3 ZZ candidates at 125 GeV are more Higgs than SM dibosons like!




Check for overtraining

Using 9 variables in a BDT (200 trees, 4 nodes) and checking for overtraining:
TMVA overtraining check for classifier: BDTG
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PDFs used in likelihood
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Hist_m
Entries 10310
Mean 1241
RMS 6.81
x2 I ndf 533.3/53
Prob 0
p0 0.1559 + 0.0027
p1 124.4+ 0.0
p2 2.187 + 0.098
p3 0.6498 + 0.0786
p4 6.379 + 2.686
p5 0.6786 + 0.1091
p6 1.504 + 0.117

0.045
0.04
0.035
0.03
0.025
0.02

0.015

Hist_A
Entries 10310
Mean 1.093
RMS 1.039
72 I ndf 385.6 / 57
Prob 0
Constant 0.03857 = 0.04827
Mean 1.084 = 1.054
Sigma 1.032 = 0.791




Angular BDT score
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Angular BDT score
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Angular BDT score
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PDFs used in likelihood

Lessons [Learned:

e Separation changed dramatically, when fiducial

cuts were included.
| ® Very hard to include ML output in fits.
- | ® Itis complicated to calculate systematics on ML

-~ { output - one needs a plan (we didn’t have one). | .- . =

It was nice to see, that there was no correlation
&4 between ML output and H candidate mass.

But the results build confidence in our results in
the Higgs to ZZ* group, and it subsequently
* {became the

ATLAS - Work in progress B
! A | [ -

1 |

1 1 | 1 1 1 1 1 1 | I | 1 1

|

150 160
Higgs candidate mass (GeV)
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Housing Prices
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Estimating Housing Prices

Slightly by coincidence, we got in contact with BoligSiden and collaborated.

They had data on 0.5M house sales 2008-2019 (90+% of all).

[ Random Search [—1 Bayesian Optimization 1 Early Stopping

3
10 MAD = 9.647%

MAD = 9.289%
<5%: 40.2% <5%: 41.3%
<10%: 68.4% <10%: 69.8%
<20%: 90.8% <20%: 91.9%
102
wn
his}
e
-
(@]
© 10t
MAD = 9.733%
<5%: 39.7%
<10%: 67.7%
10 <20%: 90.9%

—-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
Z

We used XGBoost to build a model: Dealt well with categories and NaNs.

For apartments, we managed to “break” the tough 10% uncertainty limit.
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Individuel estimates

Shapley-values also gives the possibility to see the reason behind individuel
estimates. Below is an example, illustrating this point.

SHAP plot for #489266

8.00
750 y=6.35 6.86
- 6.00
~ 500
> 3.35 4.00

Prediction

0 2.50
<L 2 I 1.04 465 0.58 L
- . 0.38 0.32 7
. [ | 0.14 0.13 /

I
0 7A8 -0.14 -0.15
' -2.00
3‘\35 el a0 \)('\5'\' \QOV\Q e(C\‘\x N\ X\ .\ro\e W st (ﬁ\O\N (ﬁ\O‘N _(\de‘/\ . de(\Q A
N \O° ed N ex (O NS NS ae ) At
‘E\e“doﬁ\;of‘s\i’sa Ng\eﬂdoms et eg%0\’ B0 pge® o e ?vo"“sea\ 5020~ y
o\

gane-

Above is shown which factors that influences the final estimate of the sales price
(and how much). The estimate is the sum of the contributions (here 6.86 MKz.).

This is a fantastic tool to get insight into the ML workings!!! 20



EjendomsVaerdiO
GeoPostNr
ByggeAAr

flot
Afstand_Kyst
BeregnetAreal
gulvvarme
treenger
eeldre
badeveerelse
leekkert

fantastisk

Word ranking

Bag of Words
° for Villa

High

Feature value
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Result of including text

Natural Language Processing

Term Frequency - Inverse Document Frequency: TF-IDF

Natural weighting of words

CountVectorizer, TfidfVectorizer

MAD(XGB, numerics only) = 0.165

MAD(XGB, text only, BOW) = 0.254

MAD(XGB, combined) = 0.147

Assign a weight to each word,
according to its frequency of use.
Welght_IDF = IOg(NaII / Nappearances)

(Numerics: GeoPostNr, BeregnetAreal, ByggeAAr, EjendomsVaerdiO, Afstand_Kyst )
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Result of including text

Natural Lar

Term F

Nati

Coui

Lessons Learned:
e The ML part of the project was fun and BDTs
worked really well.

e Including text was (at the time) harder, but we
had a way to cross check, if it worked.

e We were not at all prepared for the reluctance
to use this in the real world.

“Big ships turn very slowly!”

-IDF

each word,
quency of use.

\lall / Nappearances)

I S T T— EAY

MAD(XGB, numerics only) = 0.165

MAD(XGB, text only, BOW) = 0.254

MAD(XGB, combined) = 0.147

(Numerics: GeoPostNr, BeregnetAreal, ByggeAAr, EjendomsVaerdiO, Afstand_Kyst )
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Electron Identification
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Input Feature Ranking

Here is an example from particle physics. The blue variables were “known”,
but with SHAP we discovered three new quite good variables in data.

p_Rhad

p_Reta

p_Rhadl

p_nTracks
p_deltaEtal
p_core57cellsEnergyCorrection
p_Eratio

p_Rphi
p_deltaPhiRescaled2
p_E7x11_Lr3
p_TRTPID

p_EptRatio

p_weta2

p_et_calo

p_dPOverP

p_wtotsl

p_E3x5 Lrl
p_E3x5_Lr0

p_E7x11 _Lr2
p_fracsl

p_eta

p_pt_track
p_deltaEta2
NvtxReco
p_ambiguityType
p_flcore
p_numberOfinnermostPixelHits
p_f3

p_deltaEta0

p_fl

p_dO0Sig

p_do
averagelnteractionsPerCrossing
p_numberOfPixelHits

p_numberOfSCTHits 1
0.0

LightGBM Model SHAP Value Rankings

LH PDF variables
+Binning vars
+Selection vars
+Extra vars
+Abundant vars

2.5




Input Feature Ranking

We could of course just add all variables, but want to stay simple, and
training the models, we see that the three extra variables gives most of gain.

Electron ROC Curve Trained in Data

1071

FPR (Background Efficiency)

10—3 1

Reference Likelihood (LH) (AUC = 0.99711)
LightGBM (LH PDF varibles) (AUC = 0.99838)
LightGBM (LH +Binning vars) (AUC = 0.99879)
LightGBM (LH +Selection vars) (AUC = 0.99897)
LightGBM (LH +Extra vars) (AUC = 0.99915)
LightGBM (LH +Abundant vars) (AUC = 0.99923)

1.000

0.800

0.825

0.850

0.875

0.900
TPR (Signal Efficiency)

0.925

0.950

0.975




We could of
training the n

Input Feature Ranking

Fat kL laPay -:11hl- r'\/]/J ,-\11 "'T"\‘Iﬂ‘: f\“ﬂ\“f\h 1‘\11«'— xazant A~ obaxs ﬁ-:mﬂ1 and
y

1071

FPR (Background Efficiency)

10—2<

Lessons LLearned: pst of gain.

The price of being an early mover:

e Make sure you understand the boundary
conditions, i.e. what is wanted from the
algorithm in ALL terms

e Be prepared for people who do not like the
approach.

e Consider that different users may want
different things.

(EGamma driven by people having the W mass
measurement in mind).

0.800

0.825

0.850 0.875 0.900 0.925 0.950 0.975
TPR (Signal Efficiency)

1.000




Electron Regression
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CNNs at work

The ATLAS calorimeter data looks like images.

Can we use CNNs to get a better energy
measurement?

Em barrel Ir3

- X
Em barrel Ir2

- 10_1
Em barrel Irl

1072

| —

Em barrel IrO 10-3

104

Energy + 2e-10 [GeV]
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! TL ! S C 1 Y t Em barrel Ir3 -
Towers in Sampling 3 - 10°
ApxAn = 0.0245x0.05
Fliggcr 'r"'“'cr
2Xo0 An = 0.1 Em barrel Ir2
107*
|
Togvgefr Em barrel Irl
1072
[
[
Squurc Lol _j Em barrel IrO 10-3
Samy] .} ' i
Ap - 0 i
10.02 1
—~— 45 :
n’k‘] = r’-(’zs t
Strip towers in Sampling | 107¢

Energy + 2e-10 [GeV]
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1Z — ee candidate event
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The input variabl

We consider the cell energies as pixels in four images.

The cells contain two (used) types of information:

e Energy (primary variable)

* Time of cell energy

The variables are both scalar and cell based. The scalars
can be seen in table on the right.

Finally, we consider the (up to)

10 nearest tracks in a “TrackNet”

input:

Type

Energy

Geometric

Misc.

Name

Pt,track/ Qtrack

do/ oy

AR
verteXya -k

20

Ntrack

Ptrack

Description
Transverse momentum of track di-
vided by its charge q

d0 is the signed transverse distance
between the point of closest approach
and the z-axis where oy, is its uncer-
tainty

AR = \/(¢o —¢)*+ (o —1)*
Reconstructed vertex of the track

Longitudinal distance between the
point of closest approach and the z-
axis.

Reconstructed || of tracks.
Reconstructed ¢ of tracks.

Number of hits in the pixel detector
Number of hits in the SCT

Number of hits in the TRT

Iype

Energy

Geometric

NModCalo

A

posc:

Agr

()

sy

M3

Description

Energy deposit in layer 1-3 of ECAL.

» cell index of cluster of layer 2.

Ratio of energy between laver 0 and E, in |y| <
1.8 (end of layer 0).

Ratio of energy between layer 1 and 2 in the
ECAL.

pr estimated from tracking for the particle (only
e).

Ratio between the energy in the crack scintillators
and E,.. within 1.4 < || < 1.6.

Sum of the energy deposited in the tile-gap.
Pseudorapidity of the particle.

Difference between ¢, as extrapolated by track-
ing, use for ECAL momentum estimation and ¢

of the ECAL cluster.

Relative 5 position w.rL. the cell edge of layer 2 in
the ECAL*.

Difference between 1, as extrapolated by tracking,
use for ECAL momentum estimation and # of the
ECAL cluster (only ¢)

Relative position of 5 within cell in layer 2 in
ECAL. 2(Wuster = Mmaxtear) /0025 = 1, 1,
n of the barycenter of the cluster and #,, .. is

wster 18

» of the most energetic cell of the cluster.

Relative position in ¢ in a cell. mod(27 +
¢, n/32) — /32

Average proton-proton interaction per bunch
crossing.

# of tracks assigned (only e)

Number of reconstructed vertices.

Em barrel Ir3

Em barrel Ir2

Em barrel Irl

Em barrel IrO

0

20 40

L 100

1071

1072

10-3

1074

Energy + 2e-10 [GeV]
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The network architecture

There are many ways to combine the input variables, and we have considered
the following architectures, where the dashed lines are the considerations.

X1 rack )(smlur A Img Xgate-img

l

TrackNet

l

ScalarNet

:4-‘» FiLM gen. ‘

_______________

l

Merge

|

Upscale

o

33



Feature wlse Linear Modulation

(56,11.4) Ximg Xscalar o o ::: ::;osu in layer 1-3 of ECAL.
e “
(56.55.4) | Upsample I
Scalar net )
:.‘;,
_ AP
z e ",_,A,,,”].j’r(‘\()zﬁf 1, Mejuster i
— ’ st e e i
_ () Average proton-proton interaction per bunch
— v Misc. n, :r:i:f ssigned (only e).
(]‘1‘ ]3: 32) FILM gen. Poertexiee  Number of reconstructed vertices.
(14,13,61)  — o o | 3,y ~ Dense(512) .
— - Dense(1024)
— — (FiLM: Feature wise Linear Modulation
(7,6.61)  n— of the CNN output layers based
(7,6.128)  — ) | on the scalar input variables.)
|
I .
L Before the convolutions are
(3,3.125)  mm— pooled, they are weighted
(3,3.250)  — ) o i 1) b h P .
—— (linearly) by the “context”.
— Top In this way, the best filters in
~ Dense(256) i i
» . v the given case are given the
— most weight.
I




Electron Energy Regression
Results (v1)



The results in 2D

The Et distribution for truth (x-axis) and
reconstruction (y-axis) can be compared for
the current ATLAS and the DeepCalo
algorithms.

As the figure shows, both algorithms do well,
and improve with energy.

As the statistics is largest around 40 GeV, this
is where the comparison is most detailed, and
here DeepCalo visibly has a significantly
reduced lower edge.

Thus, the DeepCalo more rarely undershoots
the energy.

MC

Er, pred [GeV]

ET, prea [GeV]

100

80

20

20

20

40 60
ET, trutn [GeV]

40 60
ET, truth [GeV]

80

80

100

100

104

103

10?

10!

10°
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The results in 1D - MC

Integrating the previous plot into 1D considering the RE distribution, we see a
general sharpening. The improvement in relative eIQR (relQR) is about 22%.

120001
10000+
l
8000 !
1 I ]
6000 4 !
11 ]
l [
4000+ | : : |
22.354% improvement in elQR75
1 26.063% improvement in elQR95
2000 | — | ATLApS elQR75: 0.0348
] DeepCalo elQR75: 0.027
O ; 11 : | I :
096 098 1.00 1.02 1.04
E pred/ E truth

Naively, we would of course love to see a similar number in data!



Result in Zee - MC

On the Zee peak, we evaluate the improvement by fitting with a BW®CB fit,
considering the CB width (sigmaCB) as the performance parameter. We get:
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Result in Zee - MC

On the Zee peak, we evaluate the improvement by fitting with a BW®CB fit,
considering the CB width (sigmaCB) as the performance parameter. We get:
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4000, |— ntotal = 490238,00 - ntotal = 496112,00
: sigmaBW = 2,50 4000, — sigmaBW = 2,50
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Great - now let us try this in real data!
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Results on Zee - data (v1)

The result we get is a much more modest improvement:

(1-

DeepCalo
Ica
ATLAS
Ice

) =1

2.058 £ 0.010

2271 +0.019

= 9.4 1 0.9%.

Though perhaps a little disappointing, this is not surprising, as we can not

expect the MC to mimic data perfectly in the very large space considered.
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Electron Energy Regression
Training in data



®

Probe energy label in data obtained

from Z-mass (M) constraint:
M2 :
2E75(cosh(ny — 12) — cos(pr1 — ¢2))’

Elnln’],dn[ﬂ =




labels” in data, by assuming the true Z mass:

Using such labels, we train in data and get...

Training in data

Using Zee events with invariant masses 86-97 GeV, one can get “approximate

M? =2pr1pra(cosh(m —n2) — cos(¢y — ¢2)), pr=Erd
M2

2E7(cosh(11 — 72) — cos(¢1 — ¢2))”

with Ey, = Ecalib(®PT) and M? = 91.19?
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labels” in data, by assuming the true Z mass:

Using such labels, we train in data and get...

Training in data

Using Zee events with invariant masses 86-97 GeV, one can get “approximate

M? =2pr1pra(cosh(m —n2) — cos(¢y — ¢2)), pr=Erd
MZ
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with Ep, = Ecalib®PT) and M? = 91.19?
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Electron Energy Regression
Training in data and MC



Training in data and MC

Once we have labels in data, there is nothing keeping us from combining the
loss functions of MC and data (they even have the same form), and thus
training simultaneously in data and MC:

L(y, 9) — [’(y(Zee, MC)- 9(Zee, MC)) + L(y(Zee, Data)- y(Zee, Data))

This allows the model to both use the “strength” of MC, but also learn the
differences between MC and real data.

12000 , ,
o . . . 1 I
Doing this and trying out the result in 10000 | |
MC first yields: ! Lo
8000 !
1
DeepCalo 6000 |ty
(reIQRs 7-*°) =22.1+0.3% : |
40001 . Lo
21.593% improvement in elQR75
b V4 > 24.565% improvement in elQR95
OK, so at least it doesn’t ruin the model 2000 e 0 oas
for MC. Now let us try data... 0 e N
0.96 0.98 1.00 1.02 1.04
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Result in data (v2)

The result in data is rather encouraging, and greater than the sum of the
improvements from training separately in MC (9.4%) and data (5.9%).
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Outlook

While this is still “only” an improvement in the electron energy regression, and
only for lower energies (Zee range), the simultaneous training allows for
extending the energy range, by including the Electron Gun MC.

Furthermore, this training might be extended to include photons, as these
behave much the same as electrons, and suffer the same sources of uncertainties
and smearing.

For improving the H — vy resolution, one might use the following loss function
and related training samples:

L(y/ yA) — L(y(Zee, MCQC)- 9(Zee, MC)) + E(E/(Zee, Data)- yA(Zee, Data) ) +

‘C(y(Zy;t'y, MCQC)- ]?(Zy],t'y, MC)) + ‘C(y(Zyy'y, Data)- 9(Zyy'y, Data) ) +

E(]/(H’yfy, MC)/ ?(H')r'y, MC))

Meanwhile, we are trying to write this up somehow (but Malte is now a Ph.D.
in Geneva).
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Outlook

While this is st
only for lower
extending the

Furthermore, 1
behave much f
and smearing.

Lessons Learned:

e Remember to think about publishing. Even
what may seem “a fun little example” at the
time, may turn out to inspire a new line of
thinking.

e Remember to think about the longevity of any
approach. In this case, the storage of cell
information was discontinued shortly after!

eression, and
ws for

hs these
F uncertainties

For improving-urcrs

)/ Y 1L oVUIutivllL, UlIc _llllb.llt UOC UIIC 1VIIVUYVVIIL

and related training samples:

> Joss function

L(y,7)

‘C(y(Zyy'y, MCQC)- ]?(Zyy'y, MC)) + ‘C(y(Zyy'y, Data)

A

‘C(y (Zee, MC)- y (Zee, MC)) + ,C(]/ (Zee, Data)’ Y (Zee, Data) ) +

A

L(y(H’y'y, MC)/ yA(H'y'y, MC))

Y(zZup-y, Data) ) +

Meanwhile, we are trying to write this up somehow (but Malte is now a Ph.D.

in Geneva).
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FRET is a technique used
to study and dynamics
of biomolecules.

The data is a “trace”,
which is a time series
with possible phase

transitions.

The group would go
through 10000 traces and
select about 250 of
these... by hand!!!

This took a few people
about a week, and was
neither reproducible nor
optimal.

So we made DeepFRET.

DeepFRET

\ €€
[ K
\\
FRET
apsablatug 2K ‘.
_________________ ¥ e e )
FRET
35 QO P ™k
H DDA RSURT W LR |
Ji: MY
= FRET
. Export for
T Dat
osamlzﬁaelmpha;:\ — smF?Ree l‘re:cr;"c"lg.sb:if’imon » lhresi?o?dmg » Statistical analysis L4 do;:’)nas'}f/r;gm
backvands conpatble
W provioualy scoured dete”
® 3 [TJAggregate
2 F-4 A
L Neural : 3 [INoisy } discard trace
3 R B [C]scrambled
« =
g E]Stanc ngRET } keep trace
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DeepFRET

FRET is a technique used

to study and dynamics ?

of biomolecules. [ e A X pC€

The data is a “trace” _/ (™ .A.'u".’k J\M ,J)J v y

which is a time Lessons Learned: v T

with possible pll ® The experience was rather good, as the group <.¢

transitions. really wanted to go this way, and was amazed ]X °

at how well it worked.

The group wou]| ® However, the field was dubious to say the least! [“~*

through 10000 tf No one published how they classified traces. eo » [Ci€

select about 250, No one published their raw data either. -

these... by hand!!! o g T

This took a few people ¢ ]

about a week, and was _ BN | Eoeeu e

neither reproducible nor g T T R

optimal. “ 1 B e
/= ]

So we made DeepFRET.

51



Knee- & Hip surgery



The data

The analysis is based on V1.0 of the data:
Dtaseet NBI Predict PrimeereTXA 16 17 MASTER WORK.csv

Dtasat_NBI_Predict_PrimasreTXA_16_17_MASTER_ WORK
Keon Civilstatus Height Weight Hb Hb_g dl Anemi Rygning Alkohol Gangredskab Udhvilet Snorken DM_type Hypertension_ja_ell_recept Hyperkolesterol Cardiac_disease Pulmonary_disease Psych D PsD recept PsD Cerebral_attack Tidl VIE Fam_VTE AK beh PolentAK Cancer Nyre Led Alder BMI Arstal Hospital Medical_outcome
(] 1 56 69 11109 1 0 [ 1 0 2 0 0 0 [ [ 11 1 1 a 1 a a 0 0 0 &1 205503208602380 | 2016 [
(] 0 4 2 13202 a 0 a 0 1 o 0 1 0 [ [ 0o 0 [ [ a o a a 0 0 0 81 2781746031746 2017 [
[ 1 160 0 87 14007 0 0 o 1 1 2 0 1 1 1 0 0 o o Q 0 Q 0 o 81 2734375 2017 o
1 ] 170 86 95 16266 a a a 0 0 2 0 a a 0 1 o a 1 1 [} 1 78 29,4117647058824 2016 o
1 0 168 7 88 14168 0 0 o 0 o 0 0 0 0 o 0 0 0 0 0 Q 0 Q 76 258545124716553 2016 4 o
1 [} 183 % 78 12588 0 a ] 1 1 1 1 0 o o a a a [} ] 77 28035752186448588 2017 a o
1 0 173 96 9 14,49 0 0 a 1 1 1 0 1 0 0 o 1 Q 1 Q 1 1 75 32,075812004086 | 2016 o
o o 164 7% 8 12,88 1 0 ] ] 0 o 0 o0 ] 0 0 o o a 0 a 0 1 74 27,885187188453) 2016 4 o
1 o 163 7w ar 14007 a 0 1 ] 1 2 0 0 o a 1 a o a a a [} 1 73 26,0508400417247 | 2016 1 o
[ 1 170 58 78 12558 0 Q 0 0 o 0 0 o 0 o o Q 0 Q 0 Q 73 18,3391003450208 2017 7 o
o o 168 86 82 13202 0 0 a o o 0 1 o o o o o a Q a 0 Q 2017 7 o
0 3 T 558 0 0 0 2 H 0 0 0 o a a Q [ 2016 1 0
1 o 178 83 98 16456 0 0 Q o 1 2 0 1 1 0 1 o0 0 o o a o 0 a o 0 1 kAl 2016 4 o
0 0 0 7 0 2016 0
o o 170 8 85 13885 0 0 1 1 2 0 0 1 o o 1 1 1 o a Q a o 0 Q 2016 o
[ 6 3 758 0 Q 0 2017 o
o 1348 0 2017 o

There were 10573 entries with 32 variables in the data, and we tried to give a
prediction for the medical outcome (stay more than 4 nights or returning
within 30 days). The data is quite imbalanced, with only 5.7% in one class.

We have so far used a “simple” setup (algorithm: LightGBM with focal loss),
and not done a lot of optimisation... yet!
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Ranking of features

Here we show what the
most important features
were in the analysis.

age
hospital
hb
rested

walking_tool

hypertension_yes or_prescription

Age is no surprise!
HB (= blood pressure?)
also ranks high.

Hospital is not great to
see so high in the list! (*)

Also good is to see
“snore” and the likes low
in the list.

height

bmi

weight
civil_status

psd
pulmonary_disease
joint

dm_type

kidney
cerebral_attack
snore
hyper_colesterol
ak_beh

family_vte

0.00 0.02 0.04 0.06 0.08 0.10

mean(|SHAP value|) (average impact on model output magnitude)
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Further improvements

We don’t know which is “Hospital=9”, but we don’t want to send Mathias

there!
2.00
L
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Further improvements

We don’t know which is “Hospital=9”, but we don’t want to send Mathias
there!

2.00
Lessons Learned:
i | The enquiry about the data was fitting, and in
' this case the data was really nice.
e BDTs were the obvious way to go, given all Dol

5 75 sorts of NaNs, categories, and binary input.

: - 0
qq_) = e The speed with which we could make models 3
) .
=5 impressed our collaborators - twice. 0.50 o
> : : : '
o :__8 004 | ® Asking for outline data is useful. §I
T e The use of SHAP values was extremely useful, O
n .

and also convinced our colleagues.
! 1 —0.25
—0.2 A
e O . 4 T T T T T T T T T - 1 . 00
1 2 3 4 5 6 7 8 9
hospital
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Zooming Out
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Conclusions

Machine Learning is a great new tool, but of course comes with
caveats:

e Remember the context and goal:
You might do something great... to no avail!
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e Ensure reproducibility:
Save hyperparameters, models, and results.
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Conclusions

Machine Learning is a great new tool, but of course comes with
caveats:

e Remember the context and goal:
You might do something great... to no avail!

e Start with a simple model, and then expand.
Maybe the simple model is best/enough.

e Ensure reproducibility:
Save hyperparameters, models, and results.

e Beware of domain shifts:
Simulated and real data are never the same.

e All the old rules apply:
Inspect, Check, and Question data and output.
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Conclusions

Machine Learning is a sharpening of our scientific senses - not a substitution
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