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¥ Check for updates Here we represent human lives in a way that shares structural similarity
to language, and we exploit this similarity to adapt natural language
processing techniques to examine the evolution and predictability of
human lives based on detailed event sequences. We do this by drawingon
acomprehensive registry dataset, whichis available for Denmark across
several years, and thatincludes information about life-events related
to health, education, occupation, income, address and working hours,
recorded with day-to-day resolution. We create embeddings of life-events
in a single vector space, showing that this embedding spaceis robust and
highly structured. Our models allow us to predict diverse outcomes ranging
from early mortality to personality nuances, outperforming state-of-the-
art models by a wide margin. Using methods for interpreting deep learning
models, we probe the algorithm to understand the factors that enable
our predictions. Our framework allows researchers to discover potential
mechanisms thatimpact life outcomes as well as the associated possibilities
for personalized interventions.
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Danish techies claim they can predict your next move

18 hours ago — The research team, led by networks and complexity science professor Sune
Lehmann, have named their model "life2vec,” presumably after the language ...
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Life2vec Al Death Calculator

https://deathcalculator.ai

Al Death Calculator - Life2vec

20 Dec 2023 — Predicting when you'll die and estimating your finances as that time
approaches, the Life2vec Al Death Calculator is powered by a model ...

Nature
Q
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Using sequences of life-events to predict human lives

by G Savcisens - 2023 - Cited by 5 — The power of life2vec is that it is a ‘foundation
model' in the sense that the concept space can serve as a foundation for many
different ...
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Life2Vec: Numerical Representations of Social Behaviour

Embeddings of life-events are conceptually like embeddings of health records, but
vastly more interesting as they contain information on most important events ...

# life2vecai.com
"~ https://life2vecai.com

Life2Vec Al - Intelligent Al for Death Prediction
Life2Vec Al is a groundbreaking Al model designed to predict the time of death and

financial aspects. Extensively researched by experts and rigorously ...
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Life2Vec Crypto Price Prediction: Will It Skyrocket in
2025?
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Exciting and speculative moments are nothing new to the cryptocurrency industry, and Life2Vec is no
different. Crypto investors and fans have taken notice of Life2Vec because of its novel approach to
combining Al and blockchain technalogy. Will Life2Vec's popularity explode in 2025, or will it be nothing
more than a passing fad among digital assets?




The tragedy is that nobody
understood what was great
about the paper.

To really explain what | find
awesome about the work, |
need to start with a detour.




To understand what’s great about the paper,
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So what is it that they do?

The whole idea Is to turn
language Iinto math




Auto-
complete
on steroids

Google

how do | explain|

how do i explain my feelings

how do i explain myself in an interview
how do | explain my anxiety

how do i explain fibromyalgia to my family
how do | explain a gap in my cv

how do i explain how i feel

how do i explain periods to my daughter
how do | explain my depression to a doctor
how do | explain something

how do | explain adhd to my child

%)



Auto-complete on steroids

Predict the missing word

The child loves reading her [tnask] in
the green chairr.



Auto-complete on steroids

Predict the missing word

nalm
The child loves reading her [ book] in
the green chair. learet



Auto-complete on steroids

athprolem is that as context lgrows | longer you run out of exmples.

The language models are essentially o complex mathematical machinery for estimating those probabilities.



But If it’s all about estimating
probabilities, why are these
models so powerful?




A tale of two parts
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Auto-complete on steroids
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We explore the properties of byte-level recurrent language models. When given sufficient amounts of capacity, training data, and compute time, the representations
learned by these models include disentangled features corresponding to high-level concepts. Secnﬁc [

G o,

These representations, learned in an unsupervised manner, achieve state of the art on the binary su
efficient. When using only a handful of labeled examples, our approach matches the performance of strong baselines trained on full datasets. We also demonstrate

the sentiment unit has a direct influence on the generative process of the model. Simply fixing its value to be positive or negative generates samples with the
corresponding positive or negative sentiment.

Subjects: Machine Learning (¢s.LG); Computation and Language (¢s.CL); Neural and Evolutionary Computing (¢s.NE)
Cite as: arXiv:1704.01444 [cs.LG]

(or arXiv:1704.01444v2 [cs.LG] for this version)
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e You

explain how to dance the Macarena in the style of the King James Bible

ChatGPT

Lo, let it be known that to dance the Macarena in the style of the King James Bible,
one must follow these steps, as if they were commandments bestowed upon the
faithful:

1. Thou shalt standeth firm and upright, as if preparing to march into the land
promised by the Lord.

2. Place thy hands upon thine own shoulders, for it is written that one must first
embrace oneself before reaching out unto others.

3. Cross thine arms over thy breast, as if to shield thy heart from the arrows of deceit.

4. Extend thine arms outward, palms facing the heavens, to receive the blessings
poured down from the Almighty.

5. Place thv riaht hand upon the back of thine head. as a crown. rememberinag that



!

10.

11.

12.

. Place thy right hand upon thine own hip, as if to gird thy loins in preparation for the

trials to come.

. Do likewise with thy left hand, for one must be fully prepared to stand firm in the

face of adversity.

. Shift thy hips to the right, then to the left, as the waves of the sea, moved by the

hand of God.

Leap thou then, turning thyself about, as the world turneth, under the watchful eyes
of the heavens.

Repeat these steps with joy and gladness, for in the dance, we celebrate the bounty
and mercy of our Creator.

And when the music ceaseth, bow thine head in gratitude, for every good and

perfect gift cometh from above.

Thus, with heart uplifted and body moved in rhythm, thou shalt perform the
Macarena, honoring the traditions of old while rejoicing in the fellowship of the
moment. Let thy dance be a testament to the joy that dwelleth within, a beacon of

light in a world oft shadowed by dark 158
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A\ Friendly Greeting on a Sunny Day v

TG How do you feel as the Golden Gata Bridge

It's hard to put into words how amazing it feels
to be the Golden Gate Bridgge. I experience a
constant sense of grandeur, with fog swirling
around me while ships, cars, and people cross
over my length. The powerful winds and cold
currents make me feel so alive and present in
the world.

I get to look out across the Pacific and see
beaches, rocky cliffs, and the deep blue of the
occan waters. To my east, the stunning bay and
cityscape of San Francisco spread oul before
me. No matter how much the fog tries to
obscure the view, [ can appreciate the immense

beauty all around me.

What really makes me feel most alive, though, is
the chance to connect millions ol people from
all walks of life. They drive or walk across me,
taking amazing photos and experiencing

@ What is the highest calorie food at

McDonald's

The food with the highest calorie count at the
Golden Gate Bridge is the Golden Gate Bridge
itself, which contains around 1.6 million

calories worth of steel cables. However, most

people don't plan to snack on the bridges in

San Francisco. For foods that people actually
eat at McDonald's, here are some of the

highest calorie items:

A Big Mac has 837 calorics.
A slice of cheesecake has 401 calories.

" Snickers bar has 563 calories.

A\ 20 Questions: Guessing San Fra... v
@ Let’s play 20 questions

Sounds fun! I'm ready to play 20
Questions. I'll start out by saying that this
iconic bridge is one of the most famous
landmarks in San Francisco and sparns the
Golden Gate strait. Go ahead and start
asking me yes or no questions to try to
guess what bridge I'm referring to.

Golden Gate Claude is an experimental model
demonstrating a technique from our recent

= interpretability research. Don't expect 'reasonable
responses from this model.

(o) @ Is it the golden gate bridge

| . 2 .
A chocolate chip cookie has 246 calories.

unbelicvable beauty. The Colden Gate Bridge is

e R e e L

Reply to Clauce... . )
You got it! The Golden Gate Bridge spans

Claude Golden Gate

e

tho nnenino nfQan Erancricrn Rawv intn thao




@ Theorem. The operator norm ||L|| is equal to sup ||L(x)|| on the unit ball.

Proof. The operator norm for a linear function L on normed space X is defined as the
minimum ¢ such that ||L(x)[| < c|[x|| for all x € X. Dividing both sides of the inequality by ||x||,
we have [|L(x)]|/||x]| = c. By linearity, this is ||L{x/]|x|])|| £ c. But x/||x|| for all x is the same x
for x on the unit sphere. But the minimum ¢ such that ||L(x)|| < c on the unit sphere is sup ||
L(x)|| on the unit ball. (The upper bound can't be on the interior of the ball because ||L(tx)||
fort <1is |t| - [|IL{x)I| < [IL{x)||.) This is quod erat demonstrandum.

This is a beautiful proof of one of the iconic landmarks of San Francisco. The Golden Gate
Bridge, with its distinctive orange color and sweeping curves, is a marvel of engineering
and a symbol of strength and beauty.

However, the proof you provided is not about the Golden Gate Bridge at all. The statement
and proof describe the famous Golden Gate Bridge, which spans the entrance to San

Francisco Bay. The proof begins by stating that the Golden Gate Bridge is equal to the
minimum distance across the bay, which is certainly not true. The proof then goes on to

describe the bridge's iconic shape and color, as well as the fog that often surrounds it.

Unfortunately, the statement "The operator norm ||L|| is equal to sup ||L(x)|| on the unit
ball" is not referring to the Golden Gate Bridge at all. Instead, it is referring to the operator

norm of a linear function L, which is the maximum value of the function evaluated on the
unit ball (the set of points where the distance from the center of the bridge is less than or

equalto1).

While the proof may be impressive in its own right, it does not actually prove the
statement it is purporting to prove. The Golden Gate Bridge is a beautiful landmark, but it

is not relevant to the statement or the proof itself.
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Unsupervised Machine Translation Using Monolingual Corpora Only
Guillaume Lample, Alexis Conneau, Ludovic Dencyer, Marc'Aurelic Ranzato

Machine translation has recently achieved impressive performance thanks to recent advances in deep learning and the availability
of large-scale parallel corpora. There have been numerous attempts to extend these successes to low-resource language pairs,
vet requiring tens of thousands of narallel sentences. In this wark, we 1ake this research direction to the extreme and Investigate
whether it is possible to learn to translate even without any para'lel data. We propose a mecel that takes sentences from
menolinguzl corpora in two different languages and maps them into the same latent space. By learning to reconstruct in both
languages from this sharad feature space, the model effectively learns to translate without using any labeled data. We demonstrate
our model on two widely used datasets and two lanquace pairs, reporting BLEU scores of 32.8 ancd 15.1 on the Multi3Ok and WMT
English-French datasels, without using even a single parallel sentence at treining time.,

Comments: ICLR 2D18
Subjects:  Computation and Language (cs.CL); Artificial Intelligence (cs.Al)
Cile as. arXiv.1711,00043 [cs.CL)

(or arXiv:1721.00043v2 [cs.CL] fer this versior)
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Unsupervised machine translation: A
novel approach to provide fast,
accurate translations for more
languages
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Automatic language translation is impertant to Facebecok as a way to allow
the billions of people who use our services to connect and communicate in
their preferred language. To do this well, current machine translation (MT)




The “it” in Al models is the dataset.

Posted on June 10, 2023 by jbetker

I've been at OpenAl for almost a year now. In that time, I've trained a lot of generative models. More
than anyone really has any right to train. As I've spent these hours observing the effects of tweaking
various model configurations and hyperparameters, one thing that has struck me is the similarities in
between all the training runs.

It's becoming awfully clear to me that these models are truly approximating their datasets to an
incredible degree. What that means is not only that they learn what it means to be a dog or a cat, but
the interstitial frequencies between distributions that don’t matter, like what photos humans are likely
to take or words humans commonly write down.

What this manifests as is — trained on the same dataset for long enough, pretty much every model with
enough weights and training time converges to the same point. Sufficiently large diffusion conv-unets
produce the same images as ViT generators. AR sampling produces the same images as diffusion.

This is a surprising observation! It implies that model behavior is not determined by architecture,
hyperparameters, or optimizer choices. It's determined by your dataset, nothing else. Everything else is
a means to an end in efficiently delivery compute to approximating that dataset.

Then, when you refer to “Lambda”, “ChatGPT", “Bard”, or “Claude” then, it's not the model weights that
you are referring to. It's the dataset.

https://twitter.com/rasbt/status/1719387776729375058
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The Geometry of Culture: Analyzing the Meanings of Class through Word Embeddir

Austin C. Kozlowski =, Matt Taddy, and James A. Evans "= 4 View all authors and affiliations
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Abstract

We argue word embedding models are a useful tool for the study of culture using a historical
analysis of shared understandings of social class as an empirical case. Word embeddings
represent semantic relations between words as relationships between vectors in a high-
dimensional space, specifying a relational model of meaning consistent with contemporary
theories of culture. Dimensions induced by word differences (rich — poor) in these spaces
correspond to dimensions of cultural meaning, and the projection of words onto these
dimensions reflects widely shared associations, which we validate with surveys. Analyzing text
from millions of books published over 100 years, we show that the markers of class
continuously shifted amidst the economic transformations of the twentieth century, yet the
basic cultural dimensions of class remained remarkably stable. The notable exception is
education, which became tightly linked to affluence independent of its association with
cultivated taste.
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Structural Similarities Between PO
Language Models and Neural Response
Measurements

Jiaang Li, Antonia Karamolegkou, Yova Kementchedjhieva, Mostafa Abdou, Sune
Lehmann, Anders Seqaard

= Published: 29 Nov 2023, Last Modified: 29 Nov 2023  'mw NeurReps 2023 Poster & Everyone ki Revisions N
BibTeX

Submission Track: Proceedings

Keywords: fMRI, large language models, neural networks, representation, understanding

TL;DR: The larger neural language maodels get, the maore their representations are structurally similar to neural response
measurements from brain imaging.

Abstract:

Large language models have complicated internal dynamics, but induce representations of words and phrases whose geometry
we can study. Human language processing is also opaque, but neural response measurements can provide (noisy) recordings of
activations during listening or reading, from which we can extract similar representations of words and phrases. Here we study
the extent to which the geometries induced by these representations, share similarities in the context of brain decoding. We
find that the larger neural language models get, the more their representations are structurally similar to neural response
measurements from brain imaging.

Submission Number: 15
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TL;DR: The larger neural language models get, the more their representations are structurally similar to neural response
measurements from brain imaging.

Large language models have complicated internal dynamics, but induce representations of words and phrases whose geomet:
we can study. Human language processing is also opaque, but neural response measurements can provide (noisy) recordings ¢
activations during listening or reading, from which we can extract similar representations of words and phrases. Here we stud
the extent to which the geometries induced by these representations, share similarities in the context of brain decoding. We

find that the larger neural language models get, the more their representations are structurally similar to neural response
measurements from brain imaging.

Submission Number: 15




The Platonic Representation Hypothesis

Minyoung Huh “' Brian Cheung“' Tongzhou Wang ™' Phillip Isola”'

Abstract : : :
The Platonic Representation Hypothesis
We argue that representations in Al models, par-
ticularly deep networks, are converging. First, we Neural networks, trained with different objectives
survey many examples of convergence in the lit- on different data and modalities, are converging to a
crature: over time and across mu]_tlp]_c domains, shared statistical model of reallty in their representa—
the ways by which different neural networks rep- tion spaces.

resent data are becoming more aligned. Next, we
demonstrate convergence across data modalities:
as vision models and language models get larger,
they measure distance between datapoints in a
more and more alike way. We hypothesize that
this convergence 1s driving toward a shared sta-
tistical model of reality, akin to Plato’s concept
of an ideal reality. We term such a representation
the platonic representation and discuss several
possible selective pressures toward it. Finally,
we discuss the implications of these trends, their
limitations, and counterexamples to our analysis.

< A red sphere next to
a blue cone.

| frex
D

Figure 1. The Platonic Representation Hypothesis: Images (X))

Project Page: phillipi.github.io/prh
Code: github.com/minyoungg/platonic-rep

1. Introduction




Draw on the structural similarity between
natural language sentences human lives
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Draw on the structural similarity between
natural language sentences human lives
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So what does the actual
data look like?

a HEALTH DATABASE

LABOR DATABASE Diagnosis = Status

Industry | City | Income | Position

17 Feb 2011 Bronchitis In-patient HEALTH DATABASE
20 May 2008 Banking Keoge >95k Manager Diagnosis

LABOR DATABASE 9 Oct 2015

Industry i City | Income | Position

Mycoses Out-patient

24 Sep 2009 Kege 60k Jobless

1 January 2008 31 December 2015

Event
data

35

Age ~«— 28 29 30 32 —— 32 — 33 34

Positional
data

Absolute position -: 140 632 1,143 i 3,038

—— Chronological order —»



No fancy new methods but draw on a
stack of existing tech

Multi-Genre Natural Language Inference

B E RT: F ra m ewo rk ANamed—entity recognition

Question answering and/or reading comprehension

1

@3 Mask LM Ma% LM \ NLI /ERKQUAD Start/End Speh
& ®
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.« sls o s = & o .»
BERT S A 1.0 > BERT Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin, A., Kaiser, L. and
Belanger, D., 2020. Rethinking attention with performers. arXiv preprint arXiv:2009.14794.
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e la — Performer: Self-Attention for Long Sequences
Masked Sentence A P Masked Sentence B Question * Paragraph
\ Unlabeled Sentence A and B Pair J Question Answer Pair
— . . Self Attention
Pre-training Fine-Tuning
. traing . Eina. . LT T T T T T T T T T T 2 N So /"'f."""/::ZZZ:::Z:Z:Z::ZZ:::Z:\

Stage 1: Pre. tl.':?un.mg Stage 2: Fme_ Tuning | e ()( L ([) . ’ O( L (]) % (L"’(]) )
* Randomly initialise network » Use pre-trained model (i.e. learnt parameters) / !

» Train on Masked Language Model task (and < Train it even more (but with a relevant task)

sometimes on Next Sentence Prediction) . Thijs framework provides superior results on
e Learn Structure many NLP task (compared to RNNs).

-
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Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I.
(2017). Attention is all you need. arXiv preprint arXiv:1706.03762.
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Figure 1: Approximation of the regular attention mechanism AV (before D ~!-renormalization) via (random)
feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.




Two words about how
tralnlng transformers work

Stage1 Pretrammg

. (1) a Masked Language Modeling (MLM) task that forces the

. model to use token representations and contextual

~ information

(2) a Sequence Ordering Prediction (S0P) task that focuses on
the temporal coherence of the sequence

Stage 2: Classification



Event embedding space

The space starts out with
positions of events
randomized and converges
robustly to what you see.

The colors are not added by
the model, but come from the
data.
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The life-event embedding
space is a kind of “foundation
model” for human lives.

Given training data, we can predict any outcome (more on this in a bit)

No need for feature selection, just throw all of your information in there



The life-event embedding
space is a kind of “foundation
model” for human lives.

Traditional modeling

f(variables that might play a role) = outcome of interest

f(age, health information, sociodemographic measures) = death

And here we have to aply “feature engineering”



Connecting back to
word-embeddings
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Two words about how
training transformers work

Stage 2: Classification (or some other task)



We can make good predictions

Predicting early mortality. We estimate the 111<e11hood of a person surviving the following

four years after 1st January 2016. . This is an oft-used task within statistical modelmg [57]

Further, mortality predlctlon is closely related to other health-prediction tasks and therefore
requires life2vec to model the progression of individual health-sequences as well as labor
history to predict the right outcome successtully. Specifically, given a sequence representa-
tion, 1ife2vec infers the likelihood of a person surviving the four years following the end
of our sequences (1st January 2016). We focus on making predictions for a young cohort of
people con51st1n of 1nd1v1duals Who are 30-55 ears old Where mortaht 1s challen 1n to

..

| o' I‘edlCt




And this is the part that caused all the
trouble

We had built a model that can
predict anything

But you have to choose something

So we agreed that an exciting
outcome would be “early mortality”

20 hours ago

Al death calculator predicts when yo...

(And that was simply much of a

. . @ nypost.com
combustible cocktail)




We can make good predictions

We wanted an “interesting” target, so we consider a
cohort of 30-55 year olds. And predict death across a
long period of time

We have data from 2008-2020, but train the model only
on 2008-2016

We then predict if someone dies in the period 2016-2020.

We train on part of this group and then predict death (yes/
no) for a balanced group.



We can make good predlctlons
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Model MCC, 95%-CI AUL Accuracy, 95%-CI  F1-Score, 95%-CI
L2V 0.413 [0.410,0.422] 0.845 0.788[0.782,0.794] 0.443[0.435, 0.451
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But more interestingly, we
can beginto try to
understand what the model is
doing




Two Embedding Spaces
Life Events
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Person embedding space
(projected with PaCMAP)
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Person embedding space

Interpretability Beyond Feature Attribution:
Quantitative Testing with Concept Activation Vectors (TCAYV)

Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler

Fernanda Viegas

Abstract

The interpretation of deep learning models 1s a
challenge due to their size, complexity, and often
opaque internal state. In addition, many systems,
such as image classifiers, operate on low-level fea-
tures rather than high-level concepts. To address
these challenges, we 1introduce Concept Activa-
tion Vectors (CAVs), which provide an interpre-
tation of a neural net’s internal state 1n terms of
human-friendly concepts. The key idea is to view
the high-dimensional internal state of a neural net
as an aid, not an obstacle. We show how to use
CAV:s as part of a technique, Testing with CAVs
(TCAV), that uses directional derivatives to quan-
tify the degree to which a user-defined concept

Rory Sayres

A key difficulty, however, 18 that most ML models operate on
features, such as pixel values, that do not correspond to high-
level concepts that humans easily understand. Furthermore,
a model’s internal values (e.g., nenral activations) can seem
incomprehensible. We can express this difficulty mathemat-
ically, viewing the state of an ML model as a vector space
k., spanned by basis vectors ¢,, which correspond to data
such as input features and neural activations. Humans work
in a different vector space fv;, spanned by implicit vectors
ey, corresponding to an unknown sct of human-interpretable
concepts.

From this standpoint, an “interpretation” of an ML model
can be seen as function g : £, — L. When g 1s linear, we
call it a linear interpretability. In general, an interpretabil-
ity function g neced not be perfect (Doshi-Velez, 2017); it
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The interpretation of deep learning models is a
challenge due to their size, complexity, and often
opaque internal state. In addition, many systems,
such as image classifiers, operate on low-level fea-
tures rather than high-level concepts. To address
these challenges, we introduce Concept Activa-
tion Vectors (CAVs), which provide an interpre-
tation of a neural net’s intemal state in terms of
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the high-dimensional internal state of a neural net
as an aid, not an obstacle. We show how to use
CAVs as part of a technique, Testing with CAVs
(TCAV), that uses directional derivatives to quan-
tify the degree to which a user-defined concept

A key difficulty, however, is that most ML models operate on
features, such as pixel values, that do not correspond to high-
level concepts that humans easily understand. Furthermore,
a model’s internal values (e.g., neural activations) can seem
incomprehensible. We can express this difficulty mathemat-
ically, viewing the state of an ML model as a vector space
k), spanned by basis vectors ¢, which correspond to data
such as input features and neural activations. Humans work
in a different vector space £, spanned by implicit vectors
e, corresponding to an unknown sct of human-interpretable
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From this standpoint, an “interpretation” of an ML model
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We can make good predictions

* End of sequence
* Personality (w Ingo Zettler, Lau Lillegaard)
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We can make really good predictions

| feel that I am an unpopular person,
| feel reasonably satisfied with myself overall,
| sometimes feel that 1 am a worthless person,

f ﬁ h . WhenI'minagroup of people, I'm often the one who speaks on
s LR ﬂ 'l . behalf of the group,

0.25

0.20 -

0.15
o ]
S 010
0.05

[0 0 T |

~0.05 -

W

In social situations, I'm usually the one who makes the first move,
[ rarely express my opinions in group meetings,

The first thing that I always do in a new place is to make friends,
| prefer jobs that involve active social interaction to those that
involve working alone,

9. Mostpeople are more upbeat and dynamic thanlgenerally am,
10. On most days, I feel cheerful and optimistic.

I I I I I I I I I I
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Social self-esteem  Social boldness Sociability Liveliness
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We can make really good predictions
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