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General Relativity
Einstein’s theory presents us with a beautiful 
theory of gravity and several exciting 
questions:

Quantum extensions
Geometrical description <-> EFT-QFT               
(flat space / curved space) formulations
Higher derivative operator bounds
Graviton properties/mass, etc
Cosmology
Test of classical gravity principles
Test of extra dimensions / SUSY
Signs of string theory gravity….
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New data - new window  
First direct observation of a 
binary merger of black holes

Direct access to gravitational 
interactions in the most 
extreme regimes

Need for theory to match 
observational progress & 
precision.

Address interesting questions?

Amplitude methods enable refined computation and 
increased precision that complement conventional 
analysis.

A potential window to make new discoveries in 
gravity
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Quantization of gravity?
 Known since the 1960ties that a particle version of General Relativity 
can be derived from the Einstein Hilbert Lagrangian (Feynman, DeWitt) 
 Expand Einstein-Hilbert Lagrangian :

Derive vertices as in a particle theory - compute amplitudes as 
Feynman diagrams! (GW Kovacs and Thorne 1977)

gμν ≡ ημν + κhμν

Off-shell QFT methods: not very computationally efficient!
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Quantum gravity as a particle theory

Gravity as a theory with self-interactions

Non-renormalisable theory!  (‘t Hooft and Veltman)

Traditional belief : – no known symmetry can remove all 
UV-divergences

Dimensionful coupling: GN=1/M2planck

String theory can by introducing new 
length scales

3pt, 4pt, … n-pt self-interactions
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Quantum gravity? An effective field theory
A modern viewpoint (Weinberg) to view the quantization of 
general relativity from the viewpoint of effective field theory

 Consistent quantum gravity at low energies long-distance (Donoghue; 
NEJBB, Donoghue, Holstein)

ℒEH = −g[ R
16πGN

+ ℒmatter]
ℒeff GR = −g[ 2R

16πGN
+ R2 + R2

μν + … + ℒmatter + …]
EFT -gravity EFT -matter
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Advantages: Gravity as an EFT

Treating general relativity as an effective field theory: 
Natural generalisation of Einstein’s theory
Ideal (low-energy) perturbative setup

Universal consequences of underlying fundamental 
quantum theory ~~ link to low energy features, e.g., 
string and super-gravity theories
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Off-shell gravity amplitudes

Vertices: 3pt, 4pt, 5pt,..n-pt

Complicated expressions

Expand Lagrangian, tedious laborious 
process….e.g….3pt

(DeWitt;Sannan)

•
45 
terms 
+ sym
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Features of gravity computations
Several unpleasant computational features:

Complicated Feynman rules (infinitely many vertices)

Numerous double contractions

Factorial growth in the number of legs

Feynman diagram topologies: no ordering!

Loop order: complicated tensor integrals
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Key: on-shell states formalism
Spinor products : 

￼11

Different representations of 
the Lorentz group

•

(Xu, Zhang, 
Chang)

    Momentum parts of amplitudes:

Spin-2 polarisation tensors in terms of helicities, 
(squares of those of YM):
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Simplifications from Spinor-Helicity

•￼12

Huge simplifications

45 terms 
+ sym

•

Vanish in spinor helicity formalism
Gravity:

Contractions

20
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•Scattering in Gravity

 Yang-Mills MHV-amplitudes
(n) same helicities vanishes

Atree(1+,2+,3+,4+,..) = 0
(n-1) same helicities vanishes

Atree(1+,2+,..,j-,..) = 0
(n-2) same helicities:

               Atree(1+,2+,..,j-,..,k-,..) 

Atree MHV Given by the formula 
(Parke and Taylor) and proven 
         by (Berends and Giele)

￼13

First non-trivial example, 
(M)aximally 
(H)elicity (V)iolating 
(MHV) amplitudes

One single term!!
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Gravity MHV amplitudes

Can be generated from KLT via YM MHV amplitudes.

(Berends-Giele-Kuijf) recursion formula

Anti holomorphic 
Contributions 

– feature in gravity
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Example : Compact massive trees
Find ‘stringy’ structure in the scattering equation prescription (CHY)

We can generate gravity amplitudes in the following way

(NEJB, Damgaard, Tourkine, Vanhove)

Advantage that all poles are simple — no spurious poles!
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Compact massive tree amplitudes
CHY formalism leads to the following 


very compact amplitudes Straightforward 
to compute any 

tree 

order needed 
with manifest 

color-kinematic 
numerators


- no double 
poles
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A recent result covariant Compton spinning particle amplitude 
with classical ring radius a = s/m interacting with gravitons from 
quantum field theory bootstrap (NEJBB, Chen, Santos)

Compact massive spinning tree 
amplitudes

Covariant formalism that 
use a basis of entire 
functions

So we can in principle extend analysis for 
spin-less cases to more general

Match with result by 
(Cangemi, Chiodaroli, Johansson, 

Ochiov, Pichini, Skvortsov)
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Current key research directions

Key question: To identify a precise and efficient 
extraction of classical physics from amplitudes

->     Potential: Discovery of new physics 
Faster and more accurate theoretical 
breakdown of gravitational wave events!
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Post-Minkowskian expansion of Einstein’s general 
theory of relativity is helpful in connecting with scattering 
amplitudes.

Results valid for all energy regimes are ideal for 
precision predictions - both quantum and classical 
results are essential for physical consistency

We work with heavy fields: Black holes as point particles 
in quantum field theory. 

Tests of general relativity
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We start with Einstein-Hilbert term

where the minimal ‘energy-momentum’ tensor for spinless fields is

Consider the 2 -> 2 process from path integral  

𝒮 = ∫ d4x −g[ R
16πG

+ gμνTμν]

Tμν ≡ ∂μφ∂nuφ −
ημν

2 [∂αφ∂αφ − m2φ2]

φ1(p1, m1) + φ2(p2, m2) → φ1(p′￼1, m1) + φ2(p′￼2, m2)

Other possibilities 
of course possible
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- but does not give 
higher G correction 
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- ￼  factor resum velocity 
and generate covariant 
expressions

γ2



Classical gravity from particle scattering



Classical gravity from particle scattering
• Surprise: Non-linear (classical) corrections from loop diagrams!
• Can consider the various exchanges



Classical gravity from particle scattering
• Surprise: Non-linear (classical) corrections from loop diagrams!
• Can consider the various exchanges

• Define transfer momentum, CM energy



Classical gravity from particle scattering
• Surprise: Non-linear (classical) corrections from loop diagrams!
• Can consider the various exchanges

• Define transfer momentum, CM energy

Normally we work 
with expressions 

where factors of ￼  are 
hidden (￼  = c =1)

ℏ
ℏ
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Classical gravitational scattering 
from quantum field theory

● Classical limit: we keep wave number fixed and take Planck’s constant to 
zero, leads to the following Laurant expansion (quantum / classical / 
superclassical terms)

Reinstating ￼  
there is a 
difference 
between 

massive and 
massless 

propagation

ℏ
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• Lesson: we need all ‘perturbative orders’ to compute 
gravitational effects fully

• For tests of Einstein’s theory we only need to retain leading 
classical terms (often with simplifications beyond 
expectations)

• For quantum effects one need to include subleading terms 
as well (much harder…)

Computational framework
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Important point: Long range behaviour can be captured 
from unitarity cuts

Important simplification

KLT+on-shell input trees 
(e.g. Badger et al., Forde, 
Kosower) recycled from 
Yang-Mills -> gravity
In D-dimensions from CHY 
(NEJBB, Cristofoli, 
Damgaard, Gomez; 
NEJBB, Plante, Vanhove)

Using on-shell amplitude techniques 
(Neill, Rothstein; NEJBB, Donoghue, Vanhove)
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Long range behaviour
Four point amplitude take the form

Focus on deriving these ~>
Long-range behavior 

(no leading higher derivative 
contributions)

Short range behaviour ~>
higher order couplings

(NEJB, Donoghue, Holstein) 
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- Reduce to scalar integral basis
- Isolate coefficients
(NEJB, Donoghue, Vanhove)
(See also Cachazo and Guevara; 
Bern, Cheung Roiban, Shen, Solon, 
Zeng)

Example: One-loop amplitude potential
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The amplitude has a
Laurent expansion

Organise order by order in Planck’s constant

Example: One-loop amplitude potential
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• Problem in scattering 
theory to relate a scattering 
loop amplitude M to an 
interaction potential V.

• In post-Newtonian 
computations, we consider 
non-relativistic quantum 
mechanics, and this can be 
generalized to the 
relativistic case.

Link to Einstein’s theory
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• In this context the old-fashioned time-ordered perturbation theory is logical

• In particular we eliminate by hand
• Annihilation channels
• Back-tracking diagrams (no intermediate multiparticle states)
• Anti-particle intermediate states

We will also assume (classical) long-distance scattering (this has the 
consequence that we can focus on non-analytic contributions -> ideal for unitarity)

(NEJBB, Donoghue, Holstein; Cristofoli, NEJBB, Damgaard, Vanhove)

Classical gravity from quantum theory
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Classical gravitational scattering: 
Generic loop level

1) compute multi-loop cuts and 2) use consistency of the representation in 
master integrals to generate the full non-analytics pieces of the amplitude 
(classical and super-classical contributions)

Extraction of integrand similar to QCD

Spinor-helicity and D-dimension 

covariant tree 

amplitudes can be used in cuts 



Example: Einstein gravity at two-loop order



Example: Einstein gravity at two-loop order



Example: Einstein gravity at two-loop order



Back: Next integral basis



Back: Next integral basis
New integrals



Back: Next integral basis
New integrals



Back: Next integral basis
New integrals

We use unitarity cut to fix coefficients in front of 



Back: Next integral basis
New integrals

We use unitarity cut to fix coefficients in front of 
master-integrals. The full result can be written



Back: Next integral basis
New integrals

We use unitarity cut to fix coefficients in front of 
master-integrals. The full result can be written

Where the SE contribution is



Back: Next integral basis
New integrals

We use unitarity cut to fix coefficients in front of 
master-integrals. The full result can be written

Where the SE contribution is



Back: Next integral basis
New integrals

We use unitarity cut to fix coefficients in front of 
master-integrals. The full result can be written

Where the SE contribution is



Back: Next integral basis
New integrals

We use unitarity cut to fix coefficients in front of 
master-integrals. The full result can be written

Where the SE contribution is



Back: Next integral basis
New integrals

We use unitarity cut to fix coefficients in front of 
master-integrals. The full result can be written

Where the SE contribution is



Einstein gravity at two-loop order



Einstein gravity at two-loop order



Einstein gravity at two-loop order



Einstein gravity at two-loop order



Einstein gravity at two-loop order



Einstein gravity at two-loop order

Needed master integrals at two-loops for the conservative part of the 
amplitude - determined by LiteRed/FIRE6/KIRA etc.
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Einstein gravity at two-loop order

Imaginary
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Gravity amplitude in powers of hbar

Laurant expansion in 

Planck’s constant


- imaginary contribution

cancelled by radiative 


contributions 
(Di Vecchia, Heissenberg, 


Russo, Veneziano)

(Bern et al, Parra-Martinez et al)
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Gravity amplitude in b-space have iterative structure

Again iterative

structure like 

one-loop, part 
of a bigger 

scheme..Seen 
after Fourier 

transform to b 
space
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Scattering angle from amplitudes

Match with expectations

  (Bern at al, Damour; Di Vecchia et al; Hermann et al) (NEJB, 

Damgaard, 

Plante, 

Vanhove)

What is nice to see is the fact that everything matches up!

- the cancellation of terms that is demonstrated explicitly gives 

important consistency of computations. Quantum terms are 
important for getting to get the correct eikonal exponentiation
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Simpler integrand - velocity cuts tree topologies!

Probe amplitude

Next-to-probe amplitude
Simpler computation of integrands

(Brandhuber, 
Chen, 
Travaglini, Wen)

(NEJBB, 
Plante, 
Vanhove)

- heavy mass vs small |q| expansion?

- some similarities / some differences

Interesting stuff to 
investigate

Heavy-quark—EFT inspiration: 
(Damgaard, Haddad, Helset )
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Only five integrand topologies have to be considered

(NEJBB, Plante, Vanhove)



Extension to fourth order in Newton’s constant

For instance the probe result is



Post-Minkowskian framework and amplitudes



• Focus so far has been on precision classical physics: But 
all these techniques are readily available for quantum 
terms as well (however tiny effects — no possible 
observation)

• Challenge in making quantum interpretation: Classical 
physics can be understood from taking the classical limit 
and comparing to general relativity — lacking a good 
framework for quantum effects…

Post-Minkowskian framework and amplitudes



Outlook
Amplitude toolbox for computations already provided many 
new efficient methods for computation

• Amplitude tools very useful 
• Double-copy/KLT
• Unitarity
• Spinor-helicity
• CHY formalism
• Low energy limits of string theory

• Identifying IBP-
relations solving DE 
equations/integral

• Recycling tools from 
QCD computations

• Numerical programs 
for amplitude 
computation
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Conclusion
Current bottlenecks: Solving the integral system involves 
identifying IBP relations, solving the DE equations/integrals, 
and managing high multiplicities. 

A better understanding of what the minimal computation is 
could lead to a much simplified analysis.
Interesting to focus on quantum effects from a theoretical 
perspective/consistency
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                                                                        THANKS!!!






