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Plan of the talk

• Introduction  

• System setup: binary system+external body  3-body system 

• Tidal effects from Supermassive Black Holes (SMBHs) 

• Precession resonances: Newtonian derivation 

• Precession resonances in strong-gravity regime: perturbative analysis 

• Numerical analysis 

• Conclusions and future directions

→
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Gravitational waves provide invaluable information 
about the Universe 

First direct proof of existence of black 
holes and of binary systems of compact 
objects that merge

m1

m2

Introduction  

Image credit: M.Cocco

Gravitational waves provide a unique 
framework to study General Relativity
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Gravitational waves provide invaluable information 
about the Universe 

Supermassive black hole close to binary system that 
affects the dynamics of the binary through tidal forces

Introduction  

M*

m1

m2

Image credit: M.Cocco

First direct proof of existence of black 
holes and of binary systems of compact 
objects that merge

Gravitational waves provide a unique 
framework to study General Relativity

SMBH + binary system form a 3-body system

Binary systems are not isolated: how does the environment influence their dynamics?



88

Gravitational waves provide invaluable information 
about the Universe 

Introduction  

M*

m1

m2

Image credit: M.Cocco

First direct proof of existence of black 
holes and of binary systems of compact 
objects that merge

Gravitational waves provide a unique 
framework to study General Relativity

One needs to use General Relativity

Binary systems are not isolated: how does the environment influence their dynamics?

Supermassive black hole close to binary system that 
affects the dynamics of the binary through tidal forces SMBH + binary system form a 3-body system
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Introduction: tidal effects  
My motivation: understand how to describe the tidal influence of a SMBH on the dynamics of a binary 
system while being in a strong-gravity regime to learn about fundamental physics and General Relativity             
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Introduction: tidal effects  

m1

M*

m2

Images credit: M.Cocco

Newtonian regime Strong-gravity regime

My motivation: understand how to describe the tidal influence of a SMBH on the dynamics of a binary 
system while being in a strong-gravity regime to learn about fundamental physics and General Relativity             
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System setup

Supermassive Black Hole Inner orbit

Outer orbit

CoM Compact Objects  

(Black holes, Neutron 
stars, etc.)

11
If  and  are black holes, we require m1 m2 → r ≫ 2Gm1

c2 , 2Gm2
c2

ds2 = − (1 − 2GM*
c2 ̂r ) c2d ̂t2 + d ̂r2

1 − 2GM*
c2 ̂r

+ ̂r2(d ̂θ2 + sin2 ̂θd ̂ϕ2)

Schwarzschild black hole metric in  coordinates( ̂t, ̂r, ̂θ, ̂ϕ) M = m1 + m2, μ = m1m2
M



Tidal effects from a supermassive BH
Small-tide approximation — When the characteristic scale of the binary system  is much smaller 
than the radius of the curvature generated by                       

(m1, m2)
M* r

ℛ ≪ 1
[Poisson & Vlasov (2009)]

12

g00 = −1 − ℰijxixj + 𝒪(x3/ℛ3)

g0i = − 2
3 ϵijkℬj

lxkxl + 𝒪(x3/ℛ3)

gij = δij(1 − ℰklxkxl) + 𝒪(x3/ℛ3)

We write the metric near a geodesic of a background space-time using the Thorne-Hartle version of the Fermi-
normal coordinates

where  and 
 is the 

distance to the geodesic

i, j, k = 1,2,3
x = xixi = r

the terms of order  capture the quadrupole approximation of the tidal forcesx2/ℛ2

ℰij = R0i0j |x=0 , ℬij = 1
2 ϵpq(iRpq |j)0 |x=0 electric and magnetic quadruple tidal moments 

N.B.: For now we only include electric quadrupole tidal moments



Tidal effects from a supermassive BH
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Small-tide approximation — When the characteristic scale of the binary system  is much smaller 
than the radius of the curvature generated by                       

(m1, m2)
M*

r
ℛ ≪ 1 r ≪ c2 ̂r3

GM*



Tidal effects from a supermassive BH
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Small-tide approximation — When the characteristic scale of the binary system  is much smaller 
than the radius of the curvature generated by                       

(m1, m2)
M*

r
ℛ ≪ 1

Weak-field limit Triple system hierarchical in the distances

Newtonian description

̂r → ∞ r ≪ ̂r

r ≪ c2 ̂r3

GM*

 we lose info about strong-gravity effects



Tidal effects from a supermassive BH
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Small-tide approximation — When the characteristic scale of the binary system  is much smaller 
than the radius of the curvature generated by                       

(m1, m2)
M*

r
ℛ ≪ 1

Weak-field limit Triple system hierarchical in the distances

Newtonian description

̂r → ∞ r ≪ ̂r

r ≪ c2 ̂r3

GM*

 we lose info about strong-gravity effects

Triple system hierarchical in the masses

Relativistic description
m1, m2 ≪ M*

Small-hole limit  becomes → r ≪ c2 ̂r3/GM* r ≪ 2GM*/c2̂r ∼ 2GM*/c2

we can probe the strong-field regime



̂r
m2

Precession Resonance in Newtonian regime 
[A. Kuntz, Phys.Rev.D 105 (2022) 2, 024017]

Resonance condition

- - - - -  
- - - - -  

m1

M*

r

ΩN ·γ

1616

2 ·γ = p ΩN

Newtonian frequency associated 
with the Keplerian motion of the binary around  
ΩN = GM*/ ̂a →

M*

Inner binary emits gw during inspiral motion  its orbit shrinks  
precession timescale  shortens.

→ →
∼ 1/ ·γ

Resonances amplify the eccentricity of the binary system  thus leaving a clear imprint on the emitted gw

During its evolution up to merger, the inner binary passes through all the resonance conditions

We want to see what happens when being in a strong gravity regime
The main difference is that in a relativistic spacetime there are multipole fundamental frequencies associated 
to bound motion



Fundamental frequencies in strong-gravity

In strong-gravity regime

1717

Richer resonance spectrum

In Schwarzschild spacetime  the fundamental frequencies, for bounded motion, wrt proper time are:( ̂t, ̂r, ̂θ, ̂ϕ)
ω ̂t , ω ̂r, ω ̂θ, ω ̂ϕ

In Newtonian description  only 1 frequency→
In general relativistic description  multipole fundamental frequencies→ [Schmidt (2002), Flanagan 

& Hinderer (2008), Fujita & 
Hikida (2009)]
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In strong-gravity regime
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Richer resonance spectrum

In Schwarzschild spacetime  the fundamental frequencies, for bounded motion, wrt proper time are:( ̂t, ̂r, ̂θ, ̂ϕ)

Important: there is another fundamental frequency, independent of the others:

frequency associated to Marck's angle Ψ̂ωΨ̂ [M. van de Meent, Class.Quant.Grav. 37 (2020) 14, 145007]

In Newtonian description  only 1 frequency→
In general relativistic description  multipole fundamental frequencies→ [Schmidt (2002), Flanagan 

& Hinderer (2008), Fujita & 
Hikida (2009)]

ω ̂t , ω ̂r, ω ̂θ, ω ̂ϕ

The Marck’s angle  ensures that the local inertial system associated 
with the inner binary is parallel-transported along the geodesic

Ψ̂



In strong-gravity regime
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Richer resonance spectrum

In Schwarzschild spacetime  the fundamental frequencies wrt proper time are:( ̂t, ̂r, ̂θ, ̂ϕ)

with  in the Newtonian limit(Ω ̂r, Ω ̂θ, Ω ̂ϕ, ΩΨ̂) → ΩN

We use this to write frequencies wrt asymptotic time ̂t Ω ̂r = ω ̂r

ω ̂t
, Ω ̂θ =

ω ̂θ

ω ̂t
, Ω ̂ϕ =

ω ̂ϕ

ω ̂t
, ΩΨ̂ =

ωΨ̂
ω ̂t

The frequency  accounts for gravitational time dilation between the proper time , which is the local time of the 
inner binary, and , the time measured by an asymptotic observer.

ω ̂t ̂τ
̂t

ω ̂t , ω ̂r, ω ̂θ, ω ̂ϕ, ωΨ̂

Fundamental frequencies in strong-gravity
In Newtonian description  only 1 frequency→

In general relativistic description  multipole fundamental frequencies→ [Schmidt (2002), Flanagan 
& Hinderer (2008), Fujita & 
Hikida (2009)]

Due to spherical symmetry, we set  and therefore  does not appear in our results.̂θ = π/2 Ω ̂θ



ℋtidal
quad = μ

2 c2r2 ℰq

2020

⟨ℋtidal
quad⟩ = GM*

̂r3
μa2

2 [ 2 + 3e2

2 + 3 L̂2

c2 ̂r2
2 + 3e2 − 5e2 cos 2γ

4 sin2 I

−3 (1 + L̂2

c2 ̂r2 ) ( 2 + 3e2 + 5e2 cos 2γ
4 cos2(Ψ̂ − ϑ) + 2 + 3e2 − 5e2 cos 2γ

4 sin2(Ψ̂ − ϑ)cos2 I

+ 5e2

2 sin 2γ cos(Ψ̂ − ϑ)sin(Ψ̂ − ϑ)cos I)]

Inner binary  (m1, m2)

Outer binary  with M* ≫ M M = m1 + m2

[M. Cocco, G. Grignani, T. Harmark, MO and D. Pica, arXiv:2505.15901]

μ = m1m2
M

Tidal Hamiltonian r = a(1 − e2)
1 + e cos ψ

( ̂t, ̂r, ̂θ, ̂ϕ)

The hamiltonian that accounts for the tidal interaction at the 
quadrupole order is given by

After averaging over inner orbit and writing explicitly the electric tidal moments, it reads

scalar electric quadrupole tidal moment induced by ℰq → M*
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By employing the action-angle formalism, the geodesic motion of the inner binary around the SMBH can be 
solved by expressing  in terms of angle variables  satisfying( ̂r, Ψ̂) (q ̂r, qΨ̂)

Comment: only two fundamental frequencies,  and , will enter the resonance condition.Ω ̂r ΩΨ̂

The procedure is also commonly used for the more general Kerr spacetime

Action-angle variables

q ̂r = Ω ̂r ̂t, qΨ̂ = ΩΨ̂ ̂t

This is because only the generalized coordinates  and  appear in the Hamiltonian.q ̂r qΨ̂

Generalizing to a Kerr black hole, an additional fundamental frequency would arise, associated with the polar 
motion .→ Ω ̂θ

[Bini & Geralico (2016), van de Meent (2019)]



To derive analytically the precession resonance we perform an expansion for small eccentricity  of 
the outer orbit.

̂e

2222

Precession resonance in strong-gravity: perturbative analysis 
[M. Cocco, G. Grignani, T. Harmark, MO and D. Pica, arXiv:2505.15901]

This is done by expanding  and  in powers of , treating them as functions of the generalized angles 
 with 

̂r Ψ̂ ̂e
qμ μ = ̂r, Ψ̂

̂r = ̂a (1 − ̂e cos q ̂r) + 𝒪( ̂e2) Ψ̂ = qΨ̂ + 2 ̂e
̂σ − 4
̂σ − 2

̂σ − 3
̂σ − 6 sin q ̂r + 𝒪( ̂e2) ̂σ = ̂a

c2

GM*

The fundamental frequencies are given in terms of Elliptic Integrals and for small eccentricity   they read̂e

Ω ̂r = ΩN
̂σ − 6

̂σ
+ 𝒪( ̂e2), ΩΨ̂ = ΩN

̂σ − 3
̂σ

+ 𝒪( ̂e2)

Newtonian frequency associated with the Keplerian motion of the outer orbit ΩN = GM*/ ̂a3 →

It’s easy to see that  in the Newtonian limit (Ω ̂r, ΩΨ̂) → ΩN ̂σ → ∞
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Precession resonance in strong-gravity: perturbative analysis 
[M. Cocco, G. Grignani, T. Harmark, MO and D. Pica, arXiv:2505.15901]

Implementing this expansion in the hamiltonian of the system gives the following resonance conditions to 
first order in the outer eccentricity

2 ·γ = Ω ̂r 2 ·γ = − Ω ̂r + 2 ΩΨ̂ 2 ·γ = 2 ΩΨ̂ 2 ·γ = Ω ̂r + 2 ΩΨ̂

This implies the general resonance condition of the form q ·γ = k Ω ̂r + l ΩΨ̂

 reflects the structure of the quadrupole 
moment of the inner binary.
q = 2

The expression of the electric tidal moments 
 selects the allowed values of ℰij k, l

In strong-gravity regime  reacher spectrum of resonances→q ·γ = p ΩN

 in the Newtonian limitΩ ̂r, ΩΨ̂ → ΩN  in the Newtonian limitk + l → p

Comparing to the Newtonian 
resonance condition
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Precession resonance in strong-gravity: perturbative analysis 
[M. Cocco, G. Grignani, T. Harmark, MO and D. Pica, arXiv:2505.15901]

2 ·γ = Ω ̂r 2 ·γ = − Ω ̂r + 2 ΩΨ̂ 2 ·γ = 2 ΩΨ̂ 2 ·γ = Ω ̂r + 2 ΩΨ̂

e

 (years)̂t

(1,0)
(-1,2)

(0,2)

(1,2)

( k , l )

p = 1

Parameters 

M* = 5 × 107 M⊙, M = 50 M⊙,
μ = 12.5 M⊙ ̂a ∼ 7 AU, ̂e = 0.05

Initial conditions  

a0 = 0.0014 AU, I0 = 60∘,
e0 = 0.001, γ0 = θ0 = 0∘

We are deep in a 
strong-gravity regime

Comments on parameters:  km 1AU ∼ 1.5 × 108

 7AU ∼ 7 2GM*
c2 = 7R̂S

the resonances up to first order in the outer eccentricity are 

N.B: We make sure that the inner binary is stable against 

tidal disruption from SMBH  → (1 − ̂e) ̂a ≳ a ( 3M*
M )

1/3
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Precession resonance in strong-gravity: perturbative analysis 
[M. Cocco, G. Grignani, T. Harmark, MO and D. Pica, arXiv:2505.15901]

the resonances up to first order in the outer eccentricity are 

2 ·γ = Ω ̂r 2 ·γ = − Ω ̂r + 2 ΩΨ̂ 2 ·γ = 2 ΩΨ̂ 2 ·γ = Ω ̂r + 2 ΩΨ̂

e

 (years)̂t

(1,0)
(-1,2)

(0,2)

(1,2)

( k , l )

p = 1

2 ·γ = k Ω ̂r + l ΩΨ̂ 2 ·γ = p ΩN

GR N

Parameters 

M* = 5 × 107 M⊙, M = 50 M⊙,
μ = 12.5 M⊙ ̂a ∼ 7 AU, ̂e = 0.05

Initial conditions  

a0 = 0.0014 AU, I0 = 60∘,
e0 = 0.001, γ0 = θ0 = 0∘

We are deep in a 
strong-gravity regime

Comments on parameters:  km 1AU ∼ 1.5 × 108

 7AU ∼ 7 2GM*
c2 = 7R̂S
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Precession resonance in strong-gravity: numerical analysis 
[M. Cocco, G. Grignani, T. Harmark, MO and D. Pica, arXiv:2505.15901]

The numerical analysis is done by solving (numerically) the evolution equations for the orbital parameters of both 
the inner and outer orbits, without resorting to a perturbative expansion of the Hamiltonian and without the use of 
action-angle variables.

For the inner orbit the evolution equations are the Lagrange Planetary Equations…

da
d ̂t

= − 1
u ̂t

4a
GM

∂ℋ̃
∂β

, dI
d ̂t

= 1
u ̂t

1
GMa(1 − e2) sin I ( ∂ℋ̃

∂ϑ
− cos I

∂ℋ̃
∂γ ) , dβ

d ̂t
= 1

u ̂t ( 4a
GM

∂ℋ̃
∂a

+ 1 − e2

GMae
∂ℋ̃
∂e ) ,

de
d ̂t

= 1
u ̂t

1 − e2

GMae2
∂ℋ̃
∂γ

− 1 − e2

GMae
∂ℋ̃
∂β

, dγ
d ̂t

= 1
u ̂t

− 1 − e2

GMae2
∂ℋ̃
∂e

+ cot I
GMa(1 − e2)

∂ℋ̃
∂I

, dϑ
d ̂t

= − 1
u ̂t

1
GMa(1 − e2) sin I

∂ℋ̃
∂I

.

( da
d ̂t )

RR
= − 1

u ̂t

64
5

G3μM2

c5a3
(1 + 73

24 e2 + 37
96 e4)

(1 − e2)7/2 ,

( de
d ̂t )

RR
= − 1

u ̂t

304
15

G3μM2

c5a4

e (1 + 121
304 e2)

(1 − e2)5/2

….+ radiation-reaction effects

where u ̂t = d ̂t /d ̂τ is the redshift factor



2727

Precession resonance in strong-gravity: numerical analysis 
[M. Cocco, G. Grignani, T. Harmark, MO and D. Pica, arXiv:2505.15901]

For the outer orbit we use ̂r = ̂a(1 − ̂e2)
1 + ̂e cos ψ̂

[Chandrasekar (1985)]

relativistic anomaly

We keep  and  fixed and evolve the relativistic anomaly  and Marck’s angle ̂a ̂e ψ̂ Ψ̂

dψ̂
d ̂t

= GM*
̂a3(1 − ̂e2)3

(1 + ̂e cos ψ̂)2

(2δ − 1)2 − 4δ2 ̂e2

× 1 − 2δ(3 + ̂e cos ψ̂) (1 − 2δ(1 + ̂e cos ψ̂)) ,

dΨ̂
d ̂t

= 1
u ̂t

̂EL̂
c2 ̂r2 + L̂2

where δ = GM*/(c2 ̂a(1 − ̂e2))

where u ̂t = d ̂t /d ̂τ is the redshift factor

 are the conserved energy per unit mass and conserved angular momentum per unit masŝE, L̂
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Precession resonance in strong-gravity: numerical analysis 
[M. Cocco, G. Grignani, T. Harmark, MO and D. Pica, arXiv:2505.15901]

e

 (years)̂tParameters 

M* = 4 × 106 M⊙, M = 50 M⊙, μ = 12.5 M⊙
̂a = 9 RS ∼ 0.7 AU, ̂e = 0.4

Initial conditions  
a0 = 0.0006 AU, I0 = 55∘,
e0 = 0.001, γ0 = θ0 = 0∘

Entirely in LISA sensitivity band (0.001Hz − 0.1Hz)
The numerical analysis confirms the validity 
of the resonance condition  

also for finite eccentricity 

2 ·γ = k Ω ̂r + l ΩΨ̂
̂e

In the strong-gravity regime, the inner binary 
encounters more resonances compared to 
the Newtonian description 

Having multiple resonance peaks within the 
LISA band provides an opportunity to 
discriminate precession resonance effects 
from other type of resonances 



Conclusions and Future Directions
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Strong-gravity effects significantly affect the precession resonances in hierarchical triple systems 
consisting of a compact binary orbiting a SMBH

In strong-gravity  richer and more intricate resonance spectrum → 2 ·γ = k Ω ̂r + l ΩΨ̂ 2 ·γ = p ΩN

GR N
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Strong-gravity effects significantly affect the precession resonances in hierarchical triple systems 
consisting of a compact binary orbiting a SMBH

In strong-gravity  richer and more intricate resonance spectrum → 2 ·γ = k Ω ̂r + l ΩΨ̂ 2 ·γ = p ΩN

GR N

Future directions 

• Extend the analysis by modelling the central SMBH as a Kerr black hole:                                                               
- additional frequencies                                                                                                                                                      
- influence of the spin 

• Include emission of gravitational waves associated with the outer binary’s motion 

• Include higher-order terms in  in the analytical model:                                                                                           
- might reveal additional features of the resonance structure  

̂e



Beyond electric tides

Magnetic tidal moments

“Observable signature of  magnetic tidal coupling in 
hierarchical triple systems”  
M. Cocco, G. Grignani, T. Harmark, MO, D. Panella and 
D. Pica,, in preparation

• No Newtonian analog 
• Typically vanish when considering secular effects  
• But not in a non-secular scenario

We already have preliminary results including magnetic 
tidal moments to study precession resonances

! A new signature in gravitational waves?

ℋtidal
quad = ℋtidal

quad (ℰq, )ℬq
i

Work in progress — stay tuned!

3131

Conclusions and Future Directions

First example of a detectable effect 
due to magnetic tidal moments

 (years)̂tParameters 

M* = 108 M⊙, M = 50 M⊙, μ = 12.5 M⊙

̂a = 8 GM*/c2 = 4RS, ̂e = 0.08

Initial conditions  
a0 = 0.0014 AU, I0 = 25∘,
e0 = 0.001, γ0 = θ0 = 0∘

e

(1,0) (-1,2)

(-1,1)



Thank you for your attention!


