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Motivation: Feynman path integral

In Quantum Mechanics, we have the Feynman path integral

V(xg, x1) :/ S0 Dy
T 7(0)=xo

“(1)=x

The Path Integral Formulation of Your Life
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What about Field Theory?

A d-dimensional classical field theory associates to a spacetime
manifold M

@ a space of fields Fy, usually sections of some bundle over
M1

@ an action functional Sy;: Fyy — R given by

Suld] = /M £16,96,.. ]

where L: Fy — Dens(M) is the Lagrangian density.

Classical physics are understood by solving the Euler-Lagrange
equations, EL = {¢ € Fu,S[¢] = 0}.
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Motivation: Functional integrals

In Quantum Field Theory, we are interested in the partition
function

Zu :/ eéSM[¢]D¢
$EFM
and expectation values of observables

_ 1 £5ulo]
0)=7 [ etto@)ps

Mathematical problem: Spaces Fj, usually don't have sensible
integration theories.

5/37



Introduction

Motivation

Two approaches to a definition umms omes.)

Two different mathematical approaches to the path integral
are:

6/37



Introduction

Motivation

Two approaches to a definition umms omes.)

Two different mathematical approaches to the path integral
are:
@ "Physicists’ approach”: Replace the integral by its formal
asymptotic expansion in i as h — 0
~~ Feynman graphs and rules.

6/37



Introduction

Motivation

Two approaches to a definition umms omes.)

Two different mathematical approaches to the path integral
are:
@ "Physicists’ approach”: Replace the integral by its formal
asymptotic expansion in i as h — 0
~~ Feynman graphs and rules.
@ “Mathematicians’ approach”: Replace integral by
axiomatisation of its properties (Atiyah-Segal)
~~ Functors out of cobordism categories.

6/37



Introduction

Motivation

Two approaches to a definition umms omes.)

Two different mathematical approaches to the path integral
are:
@ "Physicists’ approach”: Replace the integral by its formal
asymptotic expansion in i as h — 0
~~ Feynman graphs and rules.
@ “Mathematicians’ approach”: Replace integral by
axiomatisation of its properties (Atiyah-Segal)
~~ Functors out of cobordism categories.

(a) Approach | (b) Approach Il

6/37



Introduction

Motivation

Two approaches to a definition umms omes.)

Two different mathematical approaches to the path integral
are:
@ "Physicists’ approach”: Replace the integral by its formal
asymptotic expansion in i as h — 0
~~ Feynman graphs and rules.
@ “Mathematicians’ approach”: Replace integral by
axiomatisation of its properties (Atiyah-Segal)
~~ Functors out of cobordism categories.

(a) Approach | (b) Approach Il

6/37



Introduction

Motivation

Comic of the situation

7/37



Introduction

Motivation

Chern-Simons theory: the drosophilia melanogaster

Chern-Simons theory is the 3d gauge theory with

Fu = QYM, g), SM:/Aﬂ%(A,dA)—F%(A,[A,A])

where g, (-, ) is a quadratic Lie algebra. The partition function
Zy = / ezx5cs(A) DA
Fum
and Wilson loop observables for v: St — M

1 i
(Oy)m = —/ g2 ScslAl <trR Pexp/A)
Z Fum v

were studied by Witten in 1989.
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Different Chern-Simons invariants

o Witten: For M = S3, (O,) = Jk(y) is the Jones
polynomial of the knot K.

e Witten: Zy are topological invariants of 3-manifolds.!

@ Reshitikhin-Turaev described a functorial construction of
similar invariants Zg&; \, based on quantum groups
(Approach II).

@ Frohlich-King, Bar-Natan, Kontsevich, Axelrod-Singer, &
many others studied the perturbative quantization Zggrfv,
of Chern-Simons (Approach I).

lWitten considered framed 3-manifolds due to a-1-loop anomaly
9/37
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Research Goals

Asymptotic Expansion Conjecture (AEC) [Witten, Andersen,

k pert
Prove that as k — 0o, Zgr \ ~ Zcs -

Wide Open Question (WOQ)
What is the analogous result for the Reshetikhin-Turaev
functorial field theory?

Develop new (general) tools to combine perturbative QFT and
functorial QFT to prove the WOQ and use WOQ to prove
AEC.

v
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Perturbative Quantization

Atiyah-Segal Axioms

Fix dimension d. TQFT Z associates
@ to a (d — 1)-dimensional manifold ¥ a vector space
(space of states) with pairing (Z(X), (-, ") z(x)).
@ to a d-dimensional manifold M a vector (partition
function) Z(M) € Z(OM)
such that
o Z(04 1) =C,
o Z(My Us My) = (Zw,, Zm,) (cutting and gluing axiom)

Z(()) = Z(0), ()

Figure: Illustration of the gluing axiom
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Perturbative Quantization

Cobordism category

Reformulate in categorical language: Consider category Cob
where

@ Objects are d — 1-dimensional manifolds ¥,

@ Morphisms from ¥; to ¥, are d-manifolds M with
boundary OM = ¥ ; LI ¥,.

This category carries a symmetric monoidal structure ( “tensor
product” ) given by the disjoint union.

Definition

A TQFT is a symmetric monoidal functor

Z: Cob — Vect.
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What is perturbative quantization?

@ We take a constant c in our theory which is “very small”.

@ We treat it as a parameter and looks what happens to
Z[c] if c = 0.

@ We will do this with ¢ = A ~ 1073*m. Then, the output
is a formal power series

Z[ ~hso > Tp ) a(p)h*

peCrit(S) k

(formally applying the principle of stationary phase)

@ The coefficients a,(p) are given by sums over k-loop
Feynman diagrams.

14 /37
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Perturbative Quantization

Gauge theories

@ The above equation assumes that critical points of S are
isolated.

@ In the presence of gauge symmetries, this is never true.

@ This is usually addressed via the introduction of
Faddeev-Popov ghosts.

@ One then obtains a new symmetry, the BRST symmetry
Q with Q% = 0.
@ Only BRST cohomology is physically relevant.
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Background Functorial field theories
Perturbative Quantization

Batalin-Vilkovisky (BV) formalism

Batalin and Vilkovisky generalized these ideas as follows
(~ 1980):

Embed Fy, C Fpy with an odd symplectic form w.

Suppose 1 has a compatible Berezinian, i.e. around every
point there exist canonical coordinates (x', x") such that
i = dxDx™.

Then we have a BV Laplacian A given in canonical
coordinates by A = 0,;0,+.

Extend the action functional Sy to Sy € O(Fum)[[H]]
satisfying ASy = 0 (the quantum master equation).
Choose a gauge-fixing Lagrangian £ C F)y such that Sy
restricted to £ has non-degenerate critical points.

16/37
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Perturbative Quantization

BV formalism |l

Then one can prove that for a family of Lagrangians £; one

has that
d

ISm,, 2 _
— en 2 = 0.
dt L a

In particular, one has that

Fum L

when both sides are defined. Otherwise we use the
perturbative expansion of the RHS as a definition.
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Perturbative TQFTs

Perturbative TQFTs Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

What are classical TFTs?

For me, perturbative = semiclassical. Understand classical
first.

@ From a local d-dimensional field theory (F,S), can
extract a symplectic manifold Fy associated to a
d — 1-dimenionsal manifold - the phase space.

o If ¥ C OM, there is a map m: Fyy — Fx (“restriction”)
@ If M: X1 — X, is a cobordism, then

(7T1 X 7T2)(EL) C F):l X F):2

is a relation.
@ In good cases, this is a canonical relation (lagrangian).
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The symplectic category

@ This suggests “enhancing” the category of symplectic
manifolds by allowing canonical relations as morphisms.
Simply denote this category Symp.

@ This idea was already studied Hormander,
Sniatycki-Tulczyjew, Weinstein,

Guillemin-Sternberg. . . before TQFTs

@ The main problem is that the composition of relations
needs a transversality assumption

@ Ignoring these problems, define classical TFTs as functor

F: Cob — Symp
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Perturbative TQFTs Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

Perturbative TQFTs - sketch of a definition

Let F: Cob — Symp be a classical TFT.

A perturbative TQFT quantizing F assigns

@ to d — 1-dimensional manifold & and a polarization P of
Fz a OFZ[[h]]—module H;/:J

@ to a d-dimensional manifold M with boundary an element
Zy € H"P(ELy) @ HE\,

v
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Perturbative TQFTs - sketch of a definition

Here is an attempt to formalize the gluing axiom. Suppose
M = M, Us M,.

Then we require that there is an open set of pairs of
polarizations {(P1,P,)} of Fg with pairings

(- )PPas: H? X H? — C[[A]]

and o N
7T*<ZM1, ZM2> = ZM

where 7: Fp, X Fp, — Fp and 7, denotes pushforward of
forms.
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Perturbative TQFTs Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

Perturbative TQFTs - remarks

@ The module Hyx should be constructed as a “infinite level
limit” of geometric quantization of Fyx, the reduced phase
space of the theory.

@ The partition function is a top form on Fy,. For a closed
manifold M, the idea is that the integral of this top form

Zy = / Zu
ELy

(if it exists) is the formal power series describing the
semiclassical asymptotics of the non-perturbative theory.
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BFV data

Goal: Extend BV formalism to spacetime manifolds with
boundary.

To a d — 1-dimensional closed manifold ¥ we associate a BFV
manifold consisting of:

e A graded manifold 72,

24/37



Classical TFTs
Perturbative TQFTs

Perturbative TQFTs Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

BFV data

Goal: Extend BV formalism to spacetime manifolds with
boundary.

To a d — 1-dimensional closed manifold ¥ we associate a BFV
manifold consisting of:

e A graded manifold F2,
@ An exact degree 0 symplectic form wl = da

24/37



Classical TFTs
Perturbative TQFTs

Perturbative TQFTs Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

BFV data

Goal: Extend BV formalism to spacetime manifolds with
boundary.

To a d — 1-dimensional closed manifold ¥ we associate a BFV
manifold consisting of:

e A graded manifold F2,
@ An exact degree 0 symplectic form wl = da
o A vector field Q7 of degree 1

24/37



Classical TFTs
Perturbative TQFTs

Perturbative TQFTs Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

BFV data

Goal: Extend BV formalism to spacetime manifolds with
boundary.

To a d — 1-dimensional closed manifold ¥ we associate a BFV
manifold consisting of:

e A graded manifold F2,
@ An exact degree 0 symplectic form wl = da
o A vector field Q7 of degree 1

satisfying (Q?)? =0, L%w? = 0.

24/37



Classical TFTs
Perturbative TQFTs

Perturbative TQFTs Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

BFV data

Goal: Extend BV formalism to spacetime manifolds with
boundary.

To a d — 1-dimensional closed manifold ¥ we associate a BFV
manifold consisting of:

e A graded manifold F2,
@ An exact degree 0 symplectic form wl = da
o A vector field Q7 of degree 1

satisfying (Q?)? =0, L%w? = 0.

Notice: 1Jw? = dS? for $? = Lgiqw (E Euler vector field of
M)
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Perturbative TQFTs Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

BV-BFV data

To a d-dimensional manifold M with boundary OM, we
associate a BV-BFV manifold consisting of

graded manifold Fy,

degree -1 symplectic form wy,

a degree zero function Sy

a degree +1 vector field Qp,

a surjective submersion m: Fyy — F3,, satisfying

(Qm)*> =0, 07(Qm) = Qom and

Low + 0S8y = 1 a?.
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Remarks

e F9 is a resolution of functions on the reduced phase
space.

e For OM = (), F); should be understood as a resolution of

gauge-invariant functions on the critical locus ££ of
Swm.

@ Compatible with cutting and gluing of manifolds by
taking fibered products Fay, X 7 Fum,

e Call corresponding functor F : Cob — BFV a BFV
functor.
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Perturbative Quantisation |: BV-BFV space of
states

Let F be a classical BFV functor, choose a polarisation P of
F2. BV-BFV space of states is a trivial vector bundle

7{X; = My x (7{gkﬂvgip)
where
o (Mpy, Apy) is a -1-shifted symplectic version of the
Euler-Lagrange moduli space with its canonical BV
Laplacian
e 17, is a certain “geometric quantisation” of the space of

boundary fields.
e Q7 is a coboundary operator which is a quantisation of

S9.
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Perturbative TQFTs Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

Perturbative Quantisation |l: The state

o The state Zy ¢ Dens%./\/lM ® ﬁaM (computed via
Feynman diagrams) is a half-density on M, with values
in 7{8A4-

@ It is a cocycle for the BV-BFV operator:

(RPA +Q)Zy = 0. (mQME)

The (h2A + Q) cohomology gives a perturbative TQFT.
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Reshetikhin-Turaev theories

@ Mathematically, RT invariants Zg; of a 3-manifold
M = S} are given by certain combinations of colored
Jones polynomials of L, depending on a level k € N.

@ By now it is understood that there is a 3-2-1 extended
TQFT producing the RT invariants with Z£+(S') =C, a
modular tensor category C.

@ Physically, these TQFTs correspond to Anyon models and
form the basis for topological quantum computation
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The main conjecture

Conjecture - How to prove WOQ
@ There is a perturbative TQFT Zg% such that

k 00
ZRT,M ~k—o0 ZRT,M

@ This perturbative TQFT coincides with the perturbative
TQFT defined by the (A2A + Q)-cohomology of the
perturbative quantization of the Chern-Simons BFV
functor

Let me present some evidence of this fact.
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Some evidence for part A

o Jeffrey, Freed-Gompf, Rozansky, Andersen and many
others worked on the asymptotic behaviour of Z%;.

@ In particular, Andersen-Himpel and Andersen-Mistegaard
show that on finite order mapping tori the asymptotics
are given by integrals of top forms over the moduli space
of flat connections

@ For manifolds with boundary, Andersen and many
collaborators show that the state spaces of Z&; can be
computed via geometric quantization of moduli spaces of
flat connections at level k.

@ This is evidence that one can indeed understand the
asymptotics of RT as a perturbative TQFT, but no
results for manifolds with boundary exist.
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Evidence for part B

@ Rozansky proved a certain class of manifolds M that
ZéT,M ~k—00 Z elkX TX <1 + Z I’X7/k_l>
x€Scs(M) I=1

(the AEC at first order)
@ For x =0, ry can be identified with the LMO invariant

This gives a conjectural chain of equalities

o ? ?  Spert
(ZRT)x=0 = Zimo = ZkktL = Zpc = ZEy,
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Theta invariants

At level 1 (2-loops) the first equality is known, and the
invariant known as theta (or sunset) invariant:
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Theta invariants

At level 1 (2-loops) the first equality is known, and the
invariant known as theta (or sunset) invariant:

[Kuperberg-Thurston '99, Lescop 2000's| The theta invariant
equals the Casson invariant up to a framing correction.
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State on solid torus: Feynman diagrams |

1-point diagrams:

Rules: e.g. Last one gives

Yr = 8{1( (7T17*bi77127]13) AjA
G(0M)
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Gluing of lens spaces

Let p, g coprime integers. Find m, n such that mp — nqg = 1.
Define

¢: T? = R?*/7* — R?*/7?
()~ (2 6)

o (DxSHU,(DxSY)=L,,
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Gluing of lens spaces

Let p, g coprime integers. Find m, n such that mp — nqg = 1.
Define

¢: T? = R?*/7* — R?*/7?
t m p t
(5) = (5 9 )
o (DxSYu,(DxSYHY=1L,,

@ In particular, diffeomorphism type independent of m, n
and only depends on ¢ mod p.
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Theta invariants of lens spaces

BV-BFV gluing:

ZM1U2M2 — 7T*<ZM17 ZM2>
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Theta invariants of lens spaces

BV-BFV gluing:
ZM1U2M2 = 7T*<ZM17 ZM2>

Glue theta invariant on lens space from two solid tori.
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Theta invariants of lens spaces
BV-BFV gluing:
ZM1U2M2 = 7T*<ZM17 ZM2>

Glue theta invariant on lens space from two solid tori.

Theorem [W., Cattaneo-Mnev-W.]

The theta invariant (2-loop contribution to the state) of L, 4
is

/1 1
= f; ik _ -
O = fix (12p(q m) + pS(q,p))
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Theta invariants of lens spaces

BV-BFV gluing:
ZM1U2M2 = 7T*<ZM17 ZM2>

Glue theta invariant on lens space from two solid tori.

Theorem [W., Cattaneo-Mnev-W.]

The theta invariant (2-loop contribution to the state) of L, 4
is

1

. 1
— £ fik [ T (4 -
© = ff (12p(q m)+p5(q,p))

Agrees with Results by Kuperberg-Thurston-Lescop since the
Casson(-Walker-Lescop) invariant of L(p, q) is s(q, p).
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