Perturbative TQFTs

Konstantin Wernli

Centre for Quantum Mathematics, IMADA, SDU

Danish QFT meeting, 13.08.2025

- Introduction
- 2 Background
- Perturbative TQFTs
- Back to Chern-Simons and Evidence

Motivation: Feynman path integral

In Quantum Mechanics, we have the Feynman path integral

$$\Psi(x_0,x_1) = \int_{\substack{\gamma \colon \gamma(0) = x_0 \\ \gamma(1) = x_1}} e^{\frac{i}{\hbar}S[\gamma]} D\gamma$$

The Path Integral Formulation of Your Life

A d-dimensional classical field theory associates to a spacetime manifold M

A d-dimensional classical field theory associates to a spacetime manifold M

• a space of fields F_M , usually sections of some bundle over M,

A d-dimensional classical field theory associates to a spacetime manifold M

- a space of fields F_M , usually sections of some bundle over M,
- ② an action functional $S_M \colon F_M \to \mathbb{R}$ given by

$$S_M[\phi] = \int_M \mathcal{L}[\phi, \partial \phi, \ldots]$$

where $\mathcal{L} \colon F_M \to \mathrm{Dens}(M)$ is the Lagrangian density.

A d-dimensional classical field theory associates to a spacetime manifold M

- a space of fields F_M , usually sections of some bundle over M,
- ② an action functional $S_M \colon F_M \to \mathbb{R}$ given by

$$S_M[\phi] = \int_M \mathcal{L}[\phi, \partial \phi, \ldots]$$

where $\mathcal{L} \colon F_M \to \mathrm{Dens}(M)$ is the Lagrangian density.

Classical physics are understood by solving the Euler-Lagrange equations, $EL = \{\phi \in F_M, \delta S[\phi] = 0\}.$

Motivation: Functional integrals

In Quantum Field Theory, we are interested in the partition function

$$Z_M = \int_{\phi \in F_M} e^{\frac{i}{\hbar} S_M[\phi]} D\phi$$

and expectation values of observables

$$\langle O \rangle = \frac{1}{Z} \int_{\phi \in F_M} e^{\frac{i}{\hbar} S_M[\phi]} O(\phi) D\phi$$

Mathematical problem: Spaces F_M usually don't have sensible integration theories.

Two different mathematical approaches to the path integral are:

Two different mathematical approaches to the path integral are:

• "Physicists' approach": Replace the integral by its formal asymptotic expansion in \hbar as $\hbar \to 0$ \leadsto Feynman graphs and rules.

Two different mathematical approaches to the path integral are:

- "Physicists' approach": Replace the integral by its formal asymptotic expansion in \hbar as $\hbar \to 0$
 - \rightsquigarrow Feynman graphs and rules.
- "Mathematicians' approach": Replace integral by axiomatisation of its properties (Atiyah-Segal)
 - → Functors out of cobordism categories.

Two different mathematical approaches to the path integral are:

- "Physicists' approach": Replace the integral by its formal asymptotic expansion in \hbar as $\hbar \to 0$
 - \rightsquigarrow Feynman graphs and rules.
- "Mathematicians' approach": Replace integral by axiomatisation of its properties (Atiyah-Segal)
 - → Functors out of cobordism categories.

(a) Approach I

(b) Approach II

Two different mathematical approaches to the path integral are:

- "Physicists' approach": Replace the integral by its formal asymptotic expansion in \hbar as $\hbar \to 0$
 - \rightsquigarrow Feynman graphs and rules.
- "Mathematicians' approach": Replace integral by axiomatisation of its properties (Atiyah-Segal)
 - → Functors out of cobordism categories.

(a) Approach I

(b) Approach II

Comic of the situation

Chern-Simons theory: the drosophilia melanogaster

Chern-Simons theory is the 3d gauge theory with

$$F_M = \Omega^1(M,\mathfrak{g}), \quad S_M = \int_M rac{1}{2} \langle A, dA \rangle + rac{1}{6} \langle A, [A, A]
angle$$

where $\mathfrak{g}, \langle \cdot, \cdot \rangle$ is a quadratic Lie algebra. The partition function

$$Z_M = \int_{F_M} e^{\frac{ik}{2\pi} S_{CS}(A)} DA$$

and Wilson loop observables for $\gamma \colon S^1 \to M$

$$\langle O_{\gamma} \rangle_{M} = \frac{1}{Z} \int_{F_{M}} e^{\frac{ik}{2\pi} S_{CS}[A]} \left(\operatorname{tr}_{R} \operatorname{Pexp} \int_{\gamma} A \right)$$

were studied by Witten in 1989.

Different Chern-Simons invariants

- Witten: For $M = S^3$, $\langle O_{\gamma} \rangle = J_{K(\gamma)}$ is the Jones polynomial of the knot K.
- Witten: Z_M are topological invariants of 3-manifolds.¹
- Reshitikhin-Turaev described a functorial construction of similar invariants $Z_{RT,M}^k$ based on quantum groups (Approach II).
- Fröhlich-King, Bar-Natan, Kontsevich, Axelrod-Singer, & many others studied the perturbative quantization $Z_{CS,M}^{\mathrm{pert}}$ of Chern-Simons (Approach I).

 $^{^1}$ Witten considered framed 3-manifolds due to a=1-loop anomaly \triangleright

Research Goals

Asymptotic Expansion Conjecture (AEC) [Witten, Andersen, . . .]

Prove that as $k \to \infty$, $Z_{RT,M}^k \sim Z_{CS,M}^{\text{pert}}$.

Wide Open Question (WOQ)

What is the analogous result for the Reshetikhin-Turaev functorial field theory?

Goal

Develop new (general) tools to combine perturbative QFT and functorial QFT to prove the WOQ and use WOQ to prove AFC.

- Introduction
- 2 Background
- Perturbative TQFTs
- Back to Chern-Simons and Evidence

Fix dimension d. TQFT Z associates

Fix dimension d. TQFT Z associates

• to a (d-1)-dimensional manifold Σ a vector space (space of states) with pairing $(Z(\Sigma), \langle \cdot, \cdot \rangle_{Z(\Sigma)})$,

Fix dimension d. TQFT Z associates

- to a (d-1)-dimensional manifold Σ a vector space (space of states) with pairing $(Z(\Sigma), \langle \cdot, \cdot \rangle_{Z(\Sigma)})$,
- to a *d*-dimensional manifold M a vector (partition function) $Z(M) \in Z(\partial M)$

Fix dimension d. TQFT Z associates

- to a (d-1)-dimensional manifold Σ a vector space (space of states) with pairing $(Z(\Sigma), \langle \cdot, \cdot \rangle_{Z(\Sigma)})$,
- to a *d*-dimensional manifold M a vector (partition function) $Z(M) \in Z(\partial M)$

such that

Fix dimension d. TQFT Z associates

- to a (d-1)-dimensional manifold Σ a vector space (space of states) with pairing $(Z(\Sigma), \langle \cdot, \cdot \rangle_{Z(\Sigma)})$,
- to a *d*-dimensional manifold M a vector (partition function) $Z(M) \in Z(\partial M)$

such that

•
$$Z(\emptyset^{d-1}) = \mathbb{C}$$
,

Fix dimension d. TQFT Z associates

- to a (d-1)-dimensional manifold Σ a vector space (space of states) with pairing $(Z(\Sigma), \langle \cdot, \cdot \rangle_{Z(\Sigma)})$,
- to a *d*-dimensional manifold M a vector (partition function) $Z(M) \in Z(\partial M)$

such that

- $Z(\emptyset^{d-1}) = \mathbb{C}$,
- $Z(M_1 \cup_{\Sigma} M_2) = \langle Z_{M_1}, Z_{M_2} \rangle$ (cutting and gluing axiom)

Fix dimension d. TQFT Z associates

- to a (d-1)-dimensional manifold Σ a vector space (space of states) with pairing $(Z(\Sigma), \langle \cdot, \cdot \rangle_{Z(\Sigma)})$,
- to a *d*-dimensional manifold M a vector (partition function) $Z(M) \in Z(\partial M)$

such that

- $Z(\emptyset^{d-1}) = \mathbb{C}$,
- $Z(M_1 \cup_{\Sigma} M_2) = \langle Z_{M_1}, Z_{M_2} \rangle$ (cutting and gluing axiom)

$$Z(\bigcirc) = \langle Z(\bigcirc), Z(\bigcirc) \rangle$$

Figure: Illustration of the gluing axiom

Cobordism category

Reformulate in categorical language: Consider category **Cob** where

- Objects are d-1-dimensional manifolds Σ ,
- Morphisms from Σ_1 to Σ_2 are *d*-manifolds ∂M with boundary $\partial M = \Sigma_1 \sqcup \Sigma_2$.

This category carries a symmetric monoidal structure ("tensor product") given by the disjoint union.

Definition

A TQFT is a symmetric monoidal functor

 $Z \colon \mathbf{Cob} \to \mathbf{Vect}$.

• We take a constant c in our theory which is "very small".

- We take a constant c in our theory which is "very small".
- We treat it as a parameter and looks what happens to Z[c] if $c \to 0$.

- We take a constant c in our theory which is "very small".
- We treat it as a parameter and looks what happens to Z[c] if $c \to 0$.
- We will do this with $c=\hbar\approx 10^{-35}m$. Then, the output is a formal power series

$$Z[\hbar] \sim_{\hbar \to 0} \sum_{p \in \mathsf{Crit}(S)} T_p \sum_k a_k(p) \hbar^k$$

(formally applying the principle of stationary phase)

- We take a constant c in our theory which is "very small".
- We treat it as a parameter and looks what happens to Z[c] if $c \to 0$.
- We will do this with $c = \hbar \approx 10^{-35} m$. Then, the output is a formal power series

$$Z[\hbar] \sim_{\hbar \to 0} \sum_{p \in \mathsf{Crit}(S)} T_p \sum_k a_k(p) \hbar^k$$

(formally applying the principle of stationary phase)

• The coefficients $a_k(p)$ are given by sums over k-loop Feynman diagrams.

• The above equation assumes that critical points of *S* are isolated.

- The above equation assumes that critical points of *S* are isolated.
- In the presence of gauge symmetries, this is never true.

- The above equation assumes that critical points of *S* are isolated.
- In the presence of gauge symmetries, this is never true.
- This is usually addressed via the introduction of Faddeev-Popov ghosts.

Gauge theories

- The above equation assumes that critical points of *S* are isolated.
- In the presence of gauge symmetries, this is never true.
- This is usually addressed via the introduction of Faddeev-Popov ghosts.
- One then obtains a new symmetry, the BRST symmetry Q with $Q^2=0$.

Gauge theories

- The above equation assumes that critical points of *S* are isolated.
- In the presence of gauge symmetries, this is never true.
- This is usually addressed via the introduction of Faddeev-Popov ghosts.
- One then obtains a new symmetry, the BRST symmetry Q with $Q^2=0$.
- Only BRST cohomology is physically relevant.

Batalin and Vilkovisky generalized these ideas as follows (~ 1980):

• Embed $F_M \subset \mathcal{F}_M$ with an odd symplectic form ω .

- Embed $F_M \subset \mathcal{F}_M$ with an odd symplectic form ω .
- Suppose μ has a compatible Berezinian, i.e. around every point there exist canonical coordinates (x^i, x_i^+) such that $\mu = dx \mathcal{D}x^+$.

- Embed $F_M \subset \mathcal{F}_M$ with an odd symplectic form ω .
- Suppose μ has a compatible Berezinian, i.e. around every point there exist canonical coordinates (x^i, x_i^+) such that $\mu = dx \mathcal{D}x^+$.
- Then we have a BV Laplacian Δ given in canonical coordinates by $\Delta = \partial_{x^i} \partial_{x^+_i}$.

- Embed $F_M \subset \mathcal{F}_M$ with an odd symplectic form ω .
- Suppose μ has a compatible Berezinian, i.e. around every point there exist canonical coordinates (x^i, x_i^+) such that $\mu = dx \mathcal{D}x^+$.
- Then we have a BV Laplacian Δ given in canonical coordinates by $\Delta = \partial_{x^i} \partial_{x^+_i}$.
- Extend the action functional S_M to $S_M \in \mathcal{O}(\mathcal{F}_M)[[\hbar]]$ satisfying $\Delta S_M = 0$ (the quantum master equation).

- Embed $F_M \subset \mathcal{F}_M$ with an odd symplectic form ω .
- Suppose μ has a compatible Berezinian, i.e. around every point there exist canonical coordinates (x^i, x_i^+) such that $\mu = dx \mathcal{D}x^+$.
- Then we have a BV Laplacian Δ given in canonical coordinates by $\Delta = \partial_{x^i} \partial_{x^+}$.
- Extend the action functional S_M to $S_M \in \mathcal{O}(\mathcal{F}_M)[[\hbar]]$ satisfying $\Delta S_M = 0$ (the quantum master equation).
- Choose a gauge-fixing Lagrangian $\mathcal{L} \subset \mathcal{F}_M$ such that \mathcal{S}_M restricted to \mathcal{L} has non-degenerate critical points.

BV formalism II

Then one can prove that for a family of Lagrangians \mathcal{L}_t one has that

$$rac{d}{dt}\int_{\mathcal{L}_t} \mathrm{e}^{rac{i}{\hbar}\mathcal{S}_M} \mu^{rac{1}{2}} = 0.$$

In particular, one has that

$$Z = \int_{F_{\mathcal{M}}} e^{rac{i}{\hbar} \mathcal{S}_{\mathcal{M}}[\phi]} \mathcal{D}[\phi] = \int_{\mathcal{L}} e^{rac{i}{\hbar} \mathcal{S}_{\mathcal{M}}} \mu^{rac{1}{2}}$$

when both sides are defined. Otherwise we use the perturbative expansion of the RHS as a definition.

Classical TFTs Perturbative TQFTs Gauge theories on manifolds with boundary Perturbative Quantization of BFV functor

- Introduction
- 2 Background
- Perturbative TQFTs
- Back to Chern-Simons and Evidence

What are classical TFTs?

For me, perturbative = semiclassical. Understand classical first.

- From a local d-dimensional field theory (F, S), can extract a symplectic manifold F_{Σ} associated to a d-1-dimensional manifold the phase space.
- If $\Sigma \subset \partial M$, there is a map $\pi \colon F_M \to F_\Sigma$ ("restriction")
- If $M \colon \Sigma_1 \to \Sigma_2$ is a cobordism, then

$$(\pi_1 \times \pi_2)(EL) \subset F_{\Sigma_1} \times F_{\Sigma_2}$$

is a relation.

In good cases, this is a canonical relation (lagrangian).

The symplectic category

- This suggests "enhancing" the category of symplectic manifolds by allowing canonical relations as morphisms.
 Simply denote this category Symp.
- This idea was already studied Hörmander, Sniatycki-Tulczyjew, Weinstein, Guillemin-Sternberg...before TQFTs
- The main problem is that the composition of relations needs a transversality assumption
- Ignoring these problems, define classical TFTs as functor

 $F : \mathbf{Cob} \to \mathbf{Symp}$

Perturbative TQFTs - sketch of a definition

Let $F : \mathbf{Cob} \to \mathbf{Symp}$ be a classical TFT.

Data

A perturbative TQFT quantizing F assigns

- to d-1-dimensional manifold Σ and a polarization $\mathcal P$ of F_Σ a $O_{F_\Sigma}[[\hbar]]$ -module $\mathcal H^{\mathcal P}_\Sigma$
- to a d-dimensional manifold M with boundary an element $\tilde{Z}_M \in H^{\text{top}}(EL_M) \otimes \mathcal{H}^{\mathcal{P}}_{\partial M}$.

Perturbative TQFTs - sketch of a definition

Here is an attempt to formalize the gluing axiom. Suppose $M = M_1 \cup_{\Sigma} M_2$.

Then we require that there is an open set of pairs of polarizations $\{(\mathcal{P}_1, \mathcal{P}_2)\}$ of F_{Σ} with pairings

$$\langle \cdot, \cdot \rangle_{\mathcal{P}_1, \mathcal{P}_2, \Sigma} \colon \mathcal{H}^{\mathcal{P}_1}_{\Sigma} \times \mathcal{H}^{\mathcal{P}_2}_{\Sigma} \to \mathbb{C}[[\hbar]]$$

and

$$\pi_* \langle \tilde{Z}_{M_1}, \tilde{Z}_{M_2} \rangle = \tilde{Z}_M$$

where $\pi: F_{M_1} \times F_{M_2} \to F_M$ and π_* denotes pushforward of forms.

Perturbative TQFTs - remarks

- The module \mathcal{H}_{Σ} should be constructed as a "infinite level limit" of geometric quantization of F_{Σ} , the reduced phase space of the theory.
- The partition function is a top form on F_M . For a closed manifold M, the idea is that the integral of this top form

$$Z_M = \int_{EL_M} \tilde{Z}_M$$

(if it exists) is the formal power series describing the semiclassical asymptotics of the non-perturbative theory.

Goal: Extend BV formalism to spacetime manifolds with boundary.

To a d-1-dimensional closed manifold Σ we associate a BFV manifold consisting of:

• A graded manifold $\mathcal{F}_{\Sigma}^{\partial}$,

Goal: Extend BV formalism to spacetime manifolds with boundary.

To a d-1-dimensional closed manifold Σ we associate a BFV manifold consisting of:

- A graded manifold $\mathcal{F}_{\Sigma}^{\partial}$,
- An exact degree 0 symplectic form $\omega_{\Sigma}^{\partial} = \delta \alpha$

Goal: Extend BV formalism to spacetime manifolds with boundary.

To a d-1-dimensional closed manifold Σ we associate a BFV manifold consisting of:

- A graded manifold $\mathcal{F}_{\Sigma}^{\partial}$,
- An exact degree 0 symplectic form $\omega_{\Sigma}^{\partial} = \delta \alpha$
- A vector field Q^{∂} of degree 1

Goal: Extend BV formalism to spacetime manifolds with boundary.

To a d-1-dimensional closed manifold Σ we associate a BFV manifold consisting of:

- A graded manifold $\mathcal{F}_{\Sigma}^{\partial}$,
- An exact degree 0 symplectic form $\omega_{\Sigma}^{\partial} = \delta \alpha$
- A vector field Q^{∂} of degree 1

satisfying
$$(Q^{\partial})^2=0, L_Q^{\partial}\omega^{\partial}=0.$$

Goal: Extend BV formalism to spacetime manifolds with boundary.

To a d-1-dimensional closed manifold Σ we associate a BFV manifold consisting of:

- A graded manifold $\mathcal{F}_{\Sigma}^{\partial}$,
- An exact degree 0 symplectic form $\omega_{\Sigma}^{\partial} = \delta \alpha$
- A vector field Q^{∂} of degree 1

satisfying
$$(Q^{\partial})^2=0, L_Q^{\partial}\omega^{\partial}=0.$$

Notice: $\iota_Q^{\partial}\omega^{\partial}=dS^{\partial}$ for $S^{\partial}=\iota_E\iota_Q\omega$ (*E* Euler vector field of *M*).

To a d-dimensional manifold M with boundary ∂M , we associate a BV-BFV manifold consisting of

• graded manifold \mathcal{F}_M ,

- graded manifold \mathcal{F}_M ,
- ullet degree -1 symplectic form ω_{M}

- graded manifold \mathcal{F}_M ,
- ullet degree -1 symplectic form ω_M
- ullet a degree zero function \mathcal{S}_M

- graded manifold \mathcal{F}_M ,
- degree -1 symplectic form ω_M
- ullet a degree zero function \mathcal{S}_M
- a degree +1 vector field Q_M ,

- graded manifold \mathcal{F}_M ,
- degree -1 symplectic form ω_M
- ullet a degree zero function \mathcal{S}_M
- a degree +1 vector field Q_M ,
- a surjective submersion $\pi \colon \mathcal{F}_M \to \mathcal{F}_{\partial M}^{\partial}$ satisfying $(Q_M)^2 = 0$, $\delta \pi(Q_M) = Q_{\partial M}$ and

$$\iota_{\mathcal{Q}}\omega + \delta \mathcal{S}_{\mathcal{M}} = \pi^* \alpha^{\partial}.$$

Classical 111s
Perturbative TQFTs
Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

Remarks

• \mathcal{F}^{∂} is a resolution of functions on the reduced phase space.

Remarks

- \mathcal{F}^{∂} is a resolution of functions on the reduced phase space.
- For $\partial M = \emptyset$, \mathcal{F}_M should be understood as a resolution of gauge-invariant functions on the critical locus \mathcal{EL}_M of \mathcal{S}_M .

Remarks

- \mathcal{F}^{∂} is a resolution of functions on the reduced phase space.
- For $\partial M = \emptyset$, \mathcal{F}_M should be understood as a resolution of gauge-invariant functions on the critical locus \mathcal{EL}_M of \mathcal{S}_M .
- Compatible with cutting and gluing of manifolds by taking fibered products $\mathcal{F}_{M_1} \times_{\mathcal{F}_{\Sigma}} \mathcal{F}_{M_2}$

Remarks

- \mathcal{F}^{∂} is a resolution of functions on the reduced phase space.
- For $\partial M = \emptyset$, \mathcal{F}_M should be understood as a resolution of gauge-invariant functions on the critical locus \mathcal{EL}_M of \mathcal{S}_M .
- Compatible with cutting and gluing of manifolds by taking fibered products $\mathcal{F}_{M_1} \times_{\mathcal{F}_{\Sigma}} \mathcal{F}_{M_2}$
- Call corresponding functor F : Cob → BFV a BFV functor.

Classical 1F1S
Perturbative TQFTs
Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

Perturbative Quantisation I: BV-BFV space of states

Let $\mathcal F$ be a classical BFV functor, choose a polarisation $\mathcal P$ of $\mathcal F_\Sigma^\partial$.

Classical 1F1S
Perturbative TQFTs
Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

Perturbative Quantisation I: BV-BFV space of states

Let \mathcal{F} be a classical BFV functor, choose a polarisation \mathcal{P} of $\mathcal{F}^{\partial}_{\Sigma}$. BV-BFV space of states is a trivial vector bundle

Perturbative Quantisation I: BV-BFV space of states

Let $\mathcal F$ be a classical BFV functor, choose a polarisation $\mathcal P$ of $\mathcal F_\Sigma^\partial$. BV-BFV space of states is a trivial vector bundle

$$\widehat{\mathcal{H}_{M}^{\mathcal{P}}}=\mathcal{M}_{M} imes(\mathcal{H}_{\partial M}^{\mathcal{P}},\Omega^{\mathcal{P}})$$

where

Perturbative Quantisation I: BV-BFV space of states

Let $\mathcal F$ be a classical BFV functor, choose a polarisation $\mathcal P$ of $\mathcal F_\Sigma^\partial$. BV-BFV space of states is a trivial vector bundle

$$\widehat{\mathcal{H}_{M}^{\mathcal{P}}}=\mathcal{M}_{M} imes(\mathcal{H}_{\partial M}^{\mathcal{P}},\Omega^{\mathcal{P}})$$

where

• $(\mathcal{M}_M, \Delta_M)$ is a -1-shifted symplectic version of the Euler-Lagrange moduli space with its canonical BV Laplacian

Perturbative Quantisation I: BV-BFV space of states

Let $\mathcal F$ be a classical BFV functor, choose a polarisation $\mathcal P$ of $\mathcal F_\Sigma^\partial$. BV-BFV space of states is a trivial vector bundle

$$\widehat{\mathcal{H}_{M}^{\mathcal{P}}}=\mathcal{M}_{M} imes(\mathcal{H}_{\partial M}^{\mathcal{P}},\Omega^{\mathcal{P}})$$

where

- $(\mathcal{M}_M, \Delta_M)$ is a -1-shifted symplectic version of the Euler-Lagrange moduli space with its canonical BV Laplacian
- $\mathcal{H}^{\mathcal{P}}_{\partial M}$ is a certain "geometric quantisation" of the space of boundary fields.

Perturbative Quantisation I: BV-BFV space of states

Let \mathcal{F} be a classical BFV functor, choose a polarisation \mathcal{P} of $\mathcal{F}_{\Sigma}^{\partial}$. BV-BFV space of states is a trivial vector bundle

$$\widehat{\mathcal{H}_{M}^{\mathcal{P}}}=\mathcal{M}_{M} imes(\mathcal{H}_{\partial M}^{\mathcal{P}},\Omega^{\mathcal{P}})$$

where

- $(\mathcal{M}_M, \Delta_M)$ is a -1-shifted symplectic version of the Euler-Lagrange moduli space with its canonical BV Laplacian
- $\mathcal{H}^{\mathcal{P}}_{\partial M}$ is a certain "geometric quantisation" of the space of boundary fields.
- \bullet $\Omega^{\mathcal{P}}$ is a coboundary operator which is a quantisation of S^{∂} 4 D > 4 A > 4 B > 4 B > B = 400

Classical 1F1s
Perturbative TQFTs
Gauge theories on manifolds with boundary
Perturbative Quantization of BFV functor

Perturbative Quantisation II: The state

• The state $\widehat{Z}_M \in \mathrm{Dens}^{\frac{1}{2}}\mathcal{M}_M \otimes \widehat{\mathcal{H}}_{\partial M}$ (computed via Feynman diagrams) is a half-density on \mathcal{M}_M with values in $\widehat{\mathcal{H}}_{\partial M}$.

- The state $\widehat{Z}_M \in \mathrm{Dens}^{\frac{1}{2}}\mathcal{M}_M \otimes \widehat{\mathcal{H}}_{\partial M}$ (computed via Feynman diagrams) is a half-density on \mathcal{M}_M with values in $\widehat{\mathcal{H}}_{\partial M}$.
- It is a cocycle for the BV-BFV operator:

- The state $\widehat{Z}_M \in \mathrm{Dens}^{\frac{1}{2}}\mathcal{M}_M \otimes \widehat{\mathcal{H}}_{\partial M}$ (computed via Feynman diagrams) is a half-density on \mathcal{M}_M with values in $\widehat{\mathcal{H}}_{\partial M}$.
- It is a cocycle for the BV-BFV operator:

$$(\hbar^2 \Delta + \Omega) \widehat{Z}_M = 0. \tag{mQME}$$

- The state $\widehat{Z}_M \in \mathrm{Dens}^{\frac{1}{2}}\mathcal{M}_M \otimes \widehat{\mathcal{H}}_{\partial M}$ (computed via Feynman diagrams) is a half-density on \mathcal{M}_M with values in $\widehat{\mathcal{H}}_{\partial M}$.
- It is a cocycle for the BV-BFV operator:

$$(\hbar^2 \Delta + \Omega) \widehat{Z}_M = 0.$$
 (mQME)

Conjecture

The $(\hbar^2 \Delta + \Omega)$ cohomology gives a perturbative TQFT.

- Introduction
- Background
- Perturbative TQFTs
- Back to Chern-Simons and Evidence

Reshetikhin-Turaev theories

- Mathematically, RT invariants Z_{RT}^k of a 3-manifold $M = S_L^3$ are given by certain combinations of colored Jones polynomials of L, depending on a level $k \in \mathbb{N}$.
- By now it is understood that there is a 3-2-1 extended TQFT producing the RT invariants with $Z_{RT}^k(S^1) = \mathbf{C}$, a modular tensor category \mathbf{C} .
- Physically, these TQFTs correspond to Anyon models and form the basis for topological quantum computation

The main conjecture

Conjecture - How to prove WOQ

• There is a perturbative TQFT Z_{RT}^{∞} such that

$$Z_{RT,M}^k \sim_{k\to\infty} Z_{RT,M}^\infty$$

• This perturbative TQFT coincides with the perturbative TQFT defined by the $(\hbar^2\Delta + \Omega)$ -cohomology of the perturbative quantization of the Chern-Simons BFV functor

Let me present some evidence of this fact.

Some evidence for part A

- Jeffrey, Freed-Gompf, Rozansky, Andersen and many others worked on the asymptotic behaviour of Z_{RT}^k .
- In particular, Andersen-Himpel and Andersen-Mistegaard show that on finite order mapping tori the asymptotics are given by integrals of top forms over the moduli space of flat connections
- For manifolds with boundary, Andersen and many collaborators show that the state spaces of Z_{RT}^k can be computed via geometric quantization of moduli spaces of flat connections at level k.
- This is evidence that one can indeed understand the asymptotics of RT as a perturbative TQFT, but no results for manifolds with boundary exist.

Evidence for part B

Rozansky proved a certain class of manifolds M that

$$Z_{RT,M}^{k} \sim_{k \to \infty} \sum_{x \in S_{CS}(M)} e^{ikx} T_{x} \left(1 + \sum_{l=1}^{\infty} r_{x,l} k^{-l} \right)$$

(the AEC at first order)

• For x = 0, r_0 can be identified with the LMO invariant This gives a conjectural chain of equalities

$$(Z_{RT}^{\infty})_{x=0} = Z_{LMO} \stackrel{?}{=} Z_{KKTL} = Z_{BC} \stackrel{?}{=} Z_{BV}^{pert}$$

Theta invariants

Theta invariants

At level 1 (2-loops) the first equality is known, and the invariant known as theta (or sunset) invariant:

Theta invariants

At level 1 (2-loops) the first equality is known, and the invariant known as theta (or sunset) invariant:

Theorem

[Kuperberg-Thurston '99, Lescop 2000's] The theta invariant equals the Casson invariant up to a framing correction.

1-point diagrams:

1-point diagrams:

1-point diagrams:

Rules: e.g. Last one gives

$$\psi_{\mathsf{\Gamma}} = \mathsf{g}_{i}^{jk} \int_{\mathsf{C}_{2}(\partial M)} \left(\pi_{1,*} \mathsf{b}_{1}^{i} \eta_{12} \eta_{13}\right) \mathbb{A}_{j} \mathbb{A}_{k}$$

$$\varphi \colon \mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2 \to \mathbb{R}^2 / \mathbb{Z}^2$$
$$\begin{pmatrix} t \\ \theta \end{pmatrix} \mapsto \begin{pmatrix} m & p \\ n & q \end{pmatrix} \begin{pmatrix} t \\ \theta \end{pmatrix}$$

$$\varphi \colon \mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2 \to \mathbb{R}^2 / \mathbb{Z}^2$$
$$\begin{pmatrix} t \\ \theta \end{pmatrix} \mapsto \begin{pmatrix} m & p \\ n & q \end{pmatrix} \begin{pmatrix} t \\ \theta \end{pmatrix}$$

•
$$(D \times S^1) \cup_{\varphi} (D \times S^1) \cong L_{p,q}$$

$$\varphi \colon \mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2 \to \mathbb{R}^2 / \mathbb{Z}^2$$
$$\begin{pmatrix} t \\ \theta \end{pmatrix} \mapsto \begin{pmatrix} m & p \\ n & q \end{pmatrix} \begin{pmatrix} t \\ \theta \end{pmatrix}$$

- $(D \times S^1) \cup_{\varphi} (D \times S^1) \cong L_{p,q}$
- In particular, diffeomorphism type independent of m, n and only depends on q mod p.

BV-BFV gluing:

BV-BFV gluing:

$$Z_{M_1\cup_{\Sigma}M_2}=\pi_*\langle Z_{M_1},Z_{M_2}\rangle$$

BV-BFV gluing:

$$Z_{M_1\cup_{\Sigma}M_2}=\pi_*\langle Z_{M_1},Z_{M_2}\rangle$$

Glue theta invariant on lens space from two solid tori.

BV-BFV gluing:

$$Z_{M_1\cup_{\Sigma}M_2}=\pi_*\langle Z_{M_1},Z_{M_2}\rangle$$

Glue theta invariant on lens space from two solid tori.

Theorem [W., Cattaneo-Mnev-W.]

The theta invariant (2-loop contribution to the state) of $L_{(p,q)}$ is

$$\Theta = f_{ijk}f^{ijk}\left(rac{1}{12p}(q-m) + rac{1}{p}s(q,p)
ight)$$

BV-BFV gluing:

$$Z_{M_1\cup_{\Sigma}M_2}=\pi_*\langle Z_{M_1},Z_{M_2}\rangle$$

Glue theta invariant on lens space from two solid tori.

Theorem [W., Cattaneo-Mnev-W.]

The theta invariant (2-loop contribution to the state) of $L_{(p,q)}$ is

$$\Theta = f_{ijk}f^{ijk}\left(rac{1}{12p}(q-m) + rac{1}{p}s(q,p)
ight)$$

Agrees with Results by Kuperberg-Thurston-Lescop since the Casson(-Walker-Lescop) invariant of L(p,q) is s(q,p).