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Motivation: Feynman path integral

In Quantum Mechanics, we have the Feynman path integral

Ψ(x0, x1) =

∫
γ :

γ(0)=x0
γ(1)=x1

e
i
ℏS[γ]Dγ
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What about Field Theory?

A d-dimensional classical field theory associates to a spacetime
manifold M

1 a space of fields FM , usually sections of some bundle over
M ,

2 an action functional SM : FM → R given by

SM [ϕ] =

∫
M

L[ϕ, ∂ϕ, . . .]

where L : FM → Dens(M) is the Lagrangian density.

Classical physics are understood by solving the Euler-Lagrange
equations, EL = {ϕ ∈ FM , δS [ϕ] = 0}.
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Motivation: Functional integrals

In Quantum Field Theory, we are interested in the partition
function

ZM =

∫
ϕ∈FM

e
i
ℏSM [ϕ]Dϕ

and expectation values of observables

⟨O⟩ = 1

Z

∫
ϕ∈FM

e
i
ℏSM [ϕ]O(ϕ)Dϕ

Mathematical problem: Spaces FM usually don’t have sensible
integration theories.
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Two approaches to a definition(among others...)

Two different mathematical approaches to the path integral
are:

I “Physicists’ approach”: Replace the integral by its formal
asymptotic expansion in ℏ as ℏ → 0
⇝ Feynman graphs and rules.

II “Mathematicians’ approach”: Replace integral by
axiomatisation of its properties (Atiyah-Segal)
⇝ Functors out of cobordism categories.

(a) Approach I (b) Approach II
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Chern-Simons theory: the drosophilia melanogaster

Chern-Simons theory is the 3d gauge theory with

FM = Ω1(M , g), SM =

∫
M

1

2
⟨A, dA⟩+ 1

6
⟨A, [A,A]⟩

where g, ⟨·, ·⟩ is a quadratic Lie algebra. The partition function

ZM =

∫
FM

e
ik
2π

SCS (A)DA

and Wilson loop observables for γ : S1 → M

⟨Oγ⟩M =
1

Z

∫
FM

e
ik
2π

SCS [A]

(
trR Pexp

∫
γ

A

)
were studied by Witten in 1989.
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Different Chern-Simons invariants

Witten: For M = S3, ⟨Oγ⟩ = JK(γ) is the Jones
polynomial of the knot K .

Witten: ZM are topological invariants of 3-manifolds.1

Reshitikhin-Turaev described a functorial construction of
similar invariants Z k

RT ,M based on quantum groups
(Approach II).

Fröhlich-King, Bar-Natan, Kontsevich, Axelrod-Singer, &
many others studied the perturbative quantization Z pert

CS ,M

of Chern-Simons (Approach I).

1Witten considered framed 3-manifolds due to a 1-loop anomaly
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Research Goals

Asymptotic Expansion Conjecture (AEC) [Witten, Andersen,
. . . ]

Prove that as k → ∞, Z k
RT ,M ∼ Z pert

CS ,M .

Wide Open Question (WOQ)

What is the analogous result for the Reshetikhin-Turaev
functorial field theory?

Goal

Develop new (general) tools to combine perturbative QFT and
functorial QFT to prove the WOQ and use WOQ to prove
AEC.
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Atiyah-Segal Axioms

Fix dimension d . TQFT Z associates

to a (d − 1)-dimensional manifold Σ a vector space
(space of states) with pairing (Z (Σ), ⟨·, ·⟩Z(Σ)),
to a d-dimensional manifold M a vector (partition
function) Z (M) ∈ Z (∂M)

such that
Z (∅d−1) = C,
Z (M1 ∪Σ M2) = ⟨ZM1 ,ZM2⟩ (cutting and gluing axiom)

Z ( ) = ⟨Z ( ), Z ( )⟩
Figure: Illustration of the gluing axiom

This axioms comes from formalizing the Fubini theorem for
the path integral.
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Cobordism category

Reformulate in categorical language: Consider category Cob
where

Objects are d − 1-dimensional manifolds Σ,

Morphisms from Σ1 to Σ2 are d-manifolds ∂M with
boundary ∂M = Σ1 ⊔ Σ2.

This category carries a symmetric monoidal structure (“tensor
product”) given by the disjoint union.

Definition

A TQFT is a symmetric monoidal functor

Z : Cob → Vect.
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What is perturbative quantization?

We take a constant c in our theory which is “very small”.

We treat it as a parameter and looks what happens to
Z [c] if c → 0.

We will do this with c = ℏ ≈ 10−35m. Then, the output
is a formal power series

Z [ℏ] ∼ℏ→0

∑
p∈Crit(S)

Tp

∑
k

ak(p)ℏk

(formally applying the principle of stationary phase)

The coefficients ak(p) are given by sums over k-loop
Feynman diagrams.
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Gauge theories

The above equation assumes that critical points of S are
isolated.

In the presence of gauge symmetries, this is never true.

This is usually addressed via the introduction of
Faddeev-Popov ghosts.

One then obtains a new symmetry, the BRST symmetry
Q with Q2 = 0.

Only BRST cohomology is physically relevant.

15 / 37



Introduction
Background

Perturbative TQFTs
Back to Chern-Simons and Evidence

Functorial field theories
Perturbative Quantization

Gauge theories

The above equation assumes that critical points of S are
isolated.

In the presence of gauge symmetries, this is never true.

This is usually addressed via the introduction of
Faddeev-Popov ghosts.

One then obtains a new symmetry, the BRST symmetry
Q with Q2 = 0.

Only BRST cohomology is physically relevant.

15 / 37



Introduction
Background

Perturbative TQFTs
Back to Chern-Simons and Evidence

Functorial field theories
Perturbative Quantization

Gauge theories

The above equation assumes that critical points of S are
isolated.

In the presence of gauge symmetries, this is never true.

This is usually addressed via the introduction of
Faddeev-Popov ghosts.

One then obtains a new symmetry, the BRST symmetry
Q with Q2 = 0.

Only BRST cohomology is physically relevant.

15 / 37



Introduction
Background

Perturbative TQFTs
Back to Chern-Simons and Evidence

Functorial field theories
Perturbative Quantization

Gauge theories

The above equation assumes that critical points of S are
isolated.

In the presence of gauge symmetries, this is never true.

This is usually addressed via the introduction of
Faddeev-Popov ghosts.

One then obtains a new symmetry, the BRST symmetry
Q with Q2 = 0.

Only BRST cohomology is physically relevant.

15 / 37



Introduction
Background

Perturbative TQFTs
Back to Chern-Simons and Evidence

Functorial field theories
Perturbative Quantization

Gauge theories

The above equation assumes that critical points of S are
isolated.

In the presence of gauge symmetries, this is never true.

This is usually addressed via the introduction of
Faddeev-Popov ghosts.

One then obtains a new symmetry, the BRST symmetry
Q with Q2 = 0.

Only BRST cohomology is physically relevant.

15 / 37



Introduction
Background

Perturbative TQFTs
Back to Chern-Simons and Evidence

Functorial field theories
Perturbative Quantization

Gauge theories

The above equation assumes that critical points of S are
isolated.

In the presence of gauge symmetries, this is never true.

This is usually addressed via the introduction of
Faddeev-Popov ghosts.

One then obtains a new symmetry, the BRST symmetry
Q with Q2 = 0.

Only BRST cohomology is physically relevant.

15 / 37



Introduction
Background

Perturbative TQFTs
Back to Chern-Simons and Evidence

Functorial field theories
Perturbative Quantization

Batalin-Vilkovisky (BV) formalism

Batalin and Vilkovisky generalized these ideas as follows
(∼ 1980):

Embed FM ⊂ FM with an odd symplectic form ω.

Suppose µ has a compatible Berezinian, i.e. around every
point there exist canonical coordinates (x i , x+i ) such that
µ = dxDx+.

Then we have a BV Laplacian ∆ given in canonical
coordinates by ∆ = ∂x i∂x+i .

Extend the action functional SM to SM ∈ O(FM)[[ℏ]]
satisfying ∆SM = 0 (the quantum master equation).

Choose a gauge-fixing Lagrangian L ⊂ FM such that SM

restricted to L has non-degenerate critical points.

16 / 37



Introduction
Background

Perturbative TQFTs
Back to Chern-Simons and Evidence

Functorial field theories
Perturbative Quantization

Batalin-Vilkovisky (BV) formalism

Batalin and Vilkovisky generalized these ideas as follows
(∼ 1980):

Embed FM ⊂ FM with an odd symplectic form ω.

Suppose µ has a compatible Berezinian, i.e. around every
point there exist canonical coordinates (x i , x+i ) such that
µ = dxDx+.

Then we have a BV Laplacian ∆ given in canonical
coordinates by ∆ = ∂x i∂x+i .

Extend the action functional SM to SM ∈ O(FM)[[ℏ]]
satisfying ∆SM = 0 (the quantum master equation).

Choose a gauge-fixing Lagrangian L ⊂ FM such that SM

restricted to L has non-degenerate critical points.

16 / 37



Introduction
Background

Perturbative TQFTs
Back to Chern-Simons and Evidence

Functorial field theories
Perturbative Quantization

Batalin-Vilkovisky (BV) formalism

Batalin and Vilkovisky generalized these ideas as follows
(∼ 1980):

Embed FM ⊂ FM with an odd symplectic form ω.

Suppose µ has a compatible Berezinian, i.e. around every
point there exist canonical coordinates (x i , x+i ) such that
µ = dxDx+.

Then we have a BV Laplacian ∆ given in canonical
coordinates by ∆ = ∂x i∂x+i .

Extend the action functional SM to SM ∈ O(FM)[[ℏ]]
satisfying ∆SM = 0 (the quantum master equation).

Choose a gauge-fixing Lagrangian L ⊂ FM such that SM

restricted to L has non-degenerate critical points.

16 / 37



Introduction
Background

Perturbative TQFTs
Back to Chern-Simons and Evidence

Functorial field theories
Perturbative Quantization

Batalin-Vilkovisky (BV) formalism

Batalin and Vilkovisky generalized these ideas as follows
(∼ 1980):

Embed FM ⊂ FM with an odd symplectic form ω.

Suppose µ has a compatible Berezinian, i.e. around every
point there exist canonical coordinates (x i , x+i ) such that
µ = dxDx+.

Then we have a BV Laplacian ∆ given in canonical
coordinates by ∆ = ∂x i∂x+i .

Extend the action functional SM to SM ∈ O(FM)[[ℏ]]
satisfying ∆SM = 0 (the quantum master equation).

Choose a gauge-fixing Lagrangian L ⊂ FM such that SM

restricted to L has non-degenerate critical points.

16 / 37



Introduction
Background

Perturbative TQFTs
Back to Chern-Simons and Evidence

Functorial field theories
Perturbative Quantization

Batalin-Vilkovisky (BV) formalism

Batalin and Vilkovisky generalized these ideas as follows
(∼ 1980):

Embed FM ⊂ FM with an odd symplectic form ω.

Suppose µ has a compatible Berezinian, i.e. around every
point there exist canonical coordinates (x i , x+i ) such that
µ = dxDx+.

Then we have a BV Laplacian ∆ given in canonical
coordinates by ∆ = ∂x i∂x+i .

Extend the action functional SM to SM ∈ O(FM)[[ℏ]]
satisfying ∆SM = 0 (the quantum master equation).

Choose a gauge-fixing Lagrangian L ⊂ FM such that SM

restricted to L has non-degenerate critical points.

16 / 37



Introduction
Background

Perturbative TQFTs
Back to Chern-Simons and Evidence

Functorial field theories
Perturbative Quantization

Batalin-Vilkovisky (BV) formalism

Batalin and Vilkovisky generalized these ideas as follows
(∼ 1980):

Embed FM ⊂ FM with an odd symplectic form ω.

Suppose µ has a compatible Berezinian, i.e. around every
point there exist canonical coordinates (x i , x+i ) such that
µ = dxDx+.

Then we have a BV Laplacian ∆ given in canonical
coordinates by ∆ = ∂x i∂x+i .

Extend the action functional SM to SM ∈ O(FM)[[ℏ]]
satisfying ∆SM = 0 (the quantum master equation).

Choose a gauge-fixing Lagrangian L ⊂ FM such that SM

restricted to L has non-degenerate critical points.

16 / 37



Introduction
Background

Perturbative TQFTs
Back to Chern-Simons and Evidence

Functorial field theories
Perturbative Quantization

BV formalism II

Then one can prove that for a family of Lagrangians Lt one
has that

d

dt

∫
Lt

e
i
ℏSMµ

1
2 = 0.

In particular, one has that

Z =

∫
FM

e
i
ℏSM [ϕ]D[ϕ] =

∫
L
e

i
ℏSMµ

1
2

when both sides are defined. Otherwise we use the
perturbative expansion of the RHS as a definition.
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What are classical TFTs?

For me, perturbative = semiclassical. Understand classical
first.

From a local d-dimensional field theory (F , S), can
extract a symplectic manifold FΣ associated to a
d − 1-dimenionsal manifold - the phase space.

If Σ ⊂ ∂M , there is a map π : FM → FΣ (“restriction”)

If M : Σ1 → Σ2 is a cobordism, then

(π1 × π2)(EL) ⊂ FΣ1 × FΣ2

is a relation.

In good cases, this is a canonical relation (lagrangian).
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The symplectic category

This suggests “enhancing” the category of symplectic
manifolds by allowing canonical relations as morphisms.
Simply denote this category Symp.

This idea was already studied Hörmander,
Sniatycki-Tulczyjew, Weinstein,
Guillemin-Sternberg. . . before TQFTs

The main problem is that the composition of relations
needs a transversality assumption

Ignoring these problems, define classical TFTs as functor

F : Cob → Symp
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Perturbative TQFTs - sketch of a definition

Let F : Cob → Symp be a classical TFT.

Data

A perturbative TQFT quantizing F assigns

to d − 1-dimensional manifold Σ and a polarization P of
FΣ a OFΣ

[[ℏ]]-module HP
Σ

to a d-dimensional manifold M with boundary an element
Z̃M ∈ H top(ELM)⊗HP

∂M .
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Perturbative TQFTs - sketch of a definition

Here is an attempt to formalize the gluing axiom. Suppose
M = M1 ∪Σ M2.
Then we require that there is an open set of pairs of
polarizations {(P1,P2)} of FΣ with pairings

⟨·, ·⟩P1,P2,Σ : H
P1
Σ ×HP2

Σ → C[[ℏ]]

and
π∗⟨Z̃M1 , Z̃M2⟩ = Z̃M

where π : FM1 × FM2 → FM and π∗ denotes pushforward of
forms.
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Perturbative TQFTs - remarks

The module HΣ should be constructed as a “infinite level
limit” of geometric quantization of FΣ, the reduced phase
space of the theory.

The partition function is a top form on FM . For a closed
manifold M , the idea is that the integral of this top form

ZM =

∫
ELM

Z̃M

(if it exists) is the formal power series describing the
semiclassical asymptotics of the non-perturbative theory.
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BFV data

Goal: Extend BV formalism to spacetime manifolds with
boundary.
To a d − 1-dimensional closed manifold Σ we associate a BFV
manifold consisting of:

A graded manifold F∂
Σ,

An exact degree 0 symplectic form ω∂
Σ = δα

A vector field Q∂ of degree 1

satisfying (Q∂)2 = 0, L∂Qω
∂ = 0.

Notice: ι∂Qω
∂ = dS∂ for S∂ = ιE ιQω (E Euler vector field of

M).
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BV-BFV data

To a d-dimensional manifold M with boundary ∂M , we
associate a BV-BFV manifold consisting of

graded manifold FM ,

degree -1 symplectic form ωM

a degree zero function SM

a degree +1 vector field QM ,

a surjective submersion π : FM → F∂
∂M satisfying

(QM)2 = 0, δπ(QM) = Q∂M and

ιQω + δSM = π∗α∂.
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Remarks

F∂ is a resolution of functions on the reduced phase
space.

For ∂M = ∅, FM should be understood as a resolution of
gauge-invariant functions on the critical locus ELM of
SM .

Compatible with cutting and gluing of manifolds by
taking fibered products FM1 ×FΣ

FM2

Call corresponding functor F : Cob → BFV a BFV
functor.
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Perturbative Quantisation I: BV-BFV space of

states

Let F be a classical BFV functor, choose a polarisation P of
F∂

Σ.

BV-BFV space of states is a trivial vector bundle

ĤP
M = MM × (HP

∂M ,Ω
P)

where

(MM ,∆M) is a -1-shifted symplectic version of the
Euler-Lagrange moduli space with its canonical BV
Laplacian

HP
∂M is a certain “geometric quantisation” of the space of

boundary fields.

ΩP is a coboundary operator which is a quantisation of
S∂.
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Perturbative Quantisation II: The state

The state ẐM ∈ Dens
1
2MM ⊗ Ĥ∂M (computed via

Feynman diagrams) is a half-density on MM with values

in Ĥ∂M .

It is a cocycle for the BV-BFV operator:

(ℏ2∆+Ω)ẐM = 0. (mQME)

Conjecture

The (ℏ2∆+Ω) cohomology gives a perturbative TQFT.
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Reshetikhin-Turaev theories

A Mathematically, RT invariants Z k
RT of a 3-manifold

M = S3
L are given by certain combinations of colored

Jones polynomials of L, depending on a level k ∈ N.
B By now it is understood that there is a 3-2-1 extended

TQFT producing the RT invariants with Z k
RT (S

1) = C, a
modular tensor category C.

C Physically, these TQFTs correspond to Anyon models and
form the basis for topological quantum computation
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The main conjecture

Conjecture - How to prove WOQ

There is a perturbative TQFT Z∞
RT such that

Z k
RT ,M ∼k→∞ Z∞

RT ,M

This perturbative TQFT coincides with the perturbative
TQFT defined by the (ℏ2∆+Ω)-cohomology of the
perturbative quantization of the Chern-Simons BFV
functor

Let me present some evidence of this fact.
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Some evidence for part A

Jeffrey, Freed-Gompf, Rozansky, Andersen and many
others worked on the asymptotic behaviour of Z k

RT .

In particular, Andersen-Himpel and Andersen-Mistegaard
show that on finite order mapping tori the asymptotics
are given by integrals of top forms over the moduli space
of flat connections

For manifolds with boundary, Andersen and many
collaborators show that the state spaces of Z k

RT can be
computed via geometric quantization of moduli spaces of
flat connections at level k .

This is evidence that one can indeed understand the
asymptotics of RT as a perturbative TQFT, but no
results for manifolds with boundary exist.
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Evidence for part B

Rozansky proved a certain class of manifolds M that

Z k
RT ,M ∼k→∞

∑
x∈SCS (M)

e ikxTx

(
1 +

∞∑
l=1

rx ,lk
−l

)

(the AEC at first order)

For x = 0, r0 can be identified with the LMO invariant

This gives a conjectural chain of equalities

(Z∞
RT )x=0 = ZLMO

?
= ZKKTL = ZBC

?
= Z pert

BV
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Theta invariants

At level 1 (2-loops) the first equality is known, and the
invariant known as theta (or sunset) invariant:

Theorem

[Kuperberg-Thurston ’99, Lescop 2000’s] The theta invariant
equals the Casson invariant up to a framing correction.
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State on solid torus: Feynman diagrams I

1-point diagrams:

a

b b

A

b a
b

A A

Rules: e.g. Last one gives

ψΓ = g jk
i

∫
C2(∂M)

(
π1,∗b

i
1η12η13

)
AjAk
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Gluing of lens spaces

Let p, q coprime integers. Find m, n such that mp − nq = 1.
Define

φ : T2 = R2/Z2 → R2/Z2(
t
θ

)
7→
(
m p
n q

)(
t
θ

)

(D × S1) ∪φ (D × S1) ∼= Lp,q

In particular, diffeomorphism type independent of m, n
and only depends on q mod p.
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Theta invariants of lens spaces

BV-BFV gluing:

ZM1∪ΣM2 = π∗⟨ZM1 ,ZM2⟩

Glue theta invariant on lens space from two solid tori.

Theorem [W., Cattaneo-Mnev-W.]

The theta invariant (2-loop contribution to the state) of L(p,q)
is

Θ = fijk f
ijk

(
1

12p
(q −m) +

1

p
s(q, p)

)
Agrees with Results by Kuperberg-Thurston-Lescop since the
Casson(-Walker-Lescop) invariant of L(p, q) is s(q, p).
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